
Evaluating the security of containers through
reduction of potentially vulnerable components

Michael Wager
Faculty of Computer Science

University of Applied Sciences Augsburg
Augsburg, Germany

January 2024
mail@mwager.de

Abstract
The use of software containers has become a funda-

mental practice in modern application development,
offering benefits such as portability, scalability, and
efficiency. However, containers are not immune to
security vulnerabilities, which can pose significant
risks to the applications they host. This work investi-
gates the security implications of reducing potentially
vulnerable components within container images. The
research is guided by two primary research ques-
tions. First, a popular set of base images was com-
pared to base images built using component reduc-
tion methods available ("distroless images"). Second,
exploitability and impact of typical vulnerabilities
found by image scanners were analysed. This work
concludes that the usage of component reduction
methods significantly reduces the amount of security
vulnerabilities within container images. It also finds
that the probability of exploitation of the majority
of vulnerabilities found by scanners is very low, but
employing them still is a strategically sound decision.

I. Introduction
Containerization technology has revolutionized the way

software applications are developed, deployed, and man-
aged. By leveraging operating system virtualization and
the Linux kernel’s features, containers provide several ad-
vantages compared to traditional methods, including im-
proved scalability, faster deployment, resource efficiency,
and simplified application management. By encapsulating
applications and their dependencies, containers enable
consistent execution across different environments, facil-
itating portability and flexibility. One can think of it as
a simple package that encapsulates the whole applica-
tion and its dependencies. It enables developers to pack-
age their applications once and deploy them anywhere,
whether on-premises or in the cloud. Companies such as

Amazon, Google, and Microsoft are investing heavily in
containerization technology and offering container-based
services to their customers. The popularity of container-
ization technology is expected to grow in the coming years,
with many large organizations adopting it as a standard
for software development and deployment, especially with
regards to digitalization and the cloud movement of big
enterprises in recent years. As it greatly simplifies and en-
hances the way modern software is developed and deployed
to production, it also had great influence on the creation of
a concept called DevOps, the combination of development
and operations, because it facilitates continuous integra-
tion and deployment (CI/CD) workflows, leading to, when
correctly applied, higher overall software quality.

Docker, introduced in 2013, also played an important
role in popularizing containerization and revolutionizing
software development practices. It basically provides an
easy-to-use platform for building, packaging, and dis-
tributing applications as lightweight containers. The ease
of use and flexibility offered by Docker quickly propelled
its adoption within the software development community.

While Docker simplified the process of container cre-
ation and management, orchestrating and scaling contain-
ers across a cluster of machines remained a complex task.
In response to this challenge, Google introduced Kuber-
netes in 2014 as an open-source container orchestration
platform. Kubernetes, often referred to as "K8s," pro-
vides a framework for automating the deployment, scaling,
and management of containerized applications. It offers
features such as container scheduling, load balancing,
and automated scaling, allowing developers to focus on
application logic rather than infrastructure management.
Kubernetes quickly gained traction and became the de
facto standard for container orchestration.

As containers are hosted on so called container reg-
istries, all the mentioned success also leads to a giant num-
ber of public container image repositories and therefore
unfortunately also to potential issues regarding security.
Most of these containers contain a lot of components which
are not needed by the application running in production
(e.g. shells, package managers, binaries/files with special
permissions etc.) and these components often have high
or even critical vulnerabilities according to the Common
Vulnerability Scoring System (CVSS) which could be po-
tentially exploited by malicious actors. A report1 from
Sysdig claims „that 75% of containers have “high” or
“critical” patchable vulnerabilities“. So the real pity is that
it should be relatively easy to patch those vulnerabilities.

A. Motivation

Teams responsible for software product security are
trying to motivate teams to scan their container images
for security vulnerabilities. Often these process is intro-
duced later in the development lifecycle, leading to a large
number of these findings. Knowledge of security is often
rare among software engineers which is the reason for
an immense effort on the side of both teams. Especially
remediating these findings can be a complex task: vulner-
abilities and their impact in the context of the running
application need to be analysed and if necessary should
be fixed. Another option would be to accept the risk
of deploying applications with security vulnerabilities to
production. As this process is complex and highly time
consuming, one idea would be to reduce components inside
the images to a minimum and just put in the things
needed to run an application: basic folder structure, the
correct runtime environment and the source code and its
dependencies. In fact, there are projects making exactly
this possible. One example is the project called "distroless"
from Google [1], promising a smaller attack surface and
less noise of container security scanners. It is very common
to say the less components a container has, the more
secure it is because this implies a smaller attack surface [2].
According to Pratyusa K. Manadhata [3] a "larger attack
surface leads to a larger number of potential attacks on a
system". However, there are doubts 2 that these concepts
called "distroless" really lead to more security which is one
reason for the idea of this work.

Apart from simply reducing components, it would be
interesting to know if certain vulnerability findings are
actually exploitable at all. Compliance policies dictate that
these issues need to be remediated, else an application
is not allowed to be deployed to production. What if
these vulnerabilities are false positives and there is just
no possibility to exploit them?

1https://sysdig.com/content/c/pf-2022-cloud-native-security-
and-usage-report

2https://www.redhat.com/en/blog/why-distroless-containers-
arent-security-solution-you-think-they-are

B. Research objective
This paper will analyse approaches for reducing the

attack surface of container images through reducing vul-
nerable components and aims to evaluate if certain compo-
nent reduction strategies decrease the findings of security
scanners in a significant way. Also this work will analyse
actual exploitability and impact of certain scanner findings
with the goal of creating better statements and recommen-
dations for development teams. Therefore the following
research questions (RQs) shall be answered:

1) RQ1: Does the reduction of components signifi-
cantly reduce the amount of vulnerabilities within
the container image?

2) RQ2: Are typical vulnerabilities found through con-
tainer security scanners actually exploitable and
therefore a risk to the application?

II. Background
This chapter gives an overview of the concepts necessary

to understand in order to grasp the following research
and evaluation. Containers will be explained, followed by
a presentation of the basics of vulnerability assessment
regarding containers and container image scanners.

A. Containers
Before we can apply security mitigations against con-

tainer based threats, we need to understand how contain-
ers work. This chapter describes the basic Linux mecha-
nisms like Control Groups and Capabilities, which enable
the foundation of containers.

When asking the question "What exactly is a con-
tainer?", a lot of developers do not really know the history
and concepts behind it. Nevertheless this is important to
understand before we can dive deeper into security topics.
In Linux, a process is simply a running instance of a
program. A program is a set of instructions that can be
executed by the Central Processing Unit (CPU) to perform
a specific task. When a program is executed, it is loaded
into memory and becomes a process. Each process in Linux
is assigned a unique process ID (PID), which is used to
identify it. The PID is a numeric value that is used by
the operating system to manage and control the process.
Linux provides a variety of commands and tools that can
be used to view and manage processes, such as the "ps"
command, which can be used to display information about
running processes, and the "kill" command, which can be
used to terminate a process. Linux processes are designed
to run independently of one another, which means that
they have their own memory space and resources. This
allows multiple programs to be executed simultaneously
on a single system, which is a key feature of modern
operating systems like Linux. The ability to run multiple
processes concurrently is essential for modern computing,
as it allows users to perform multiple tasks at the same
time without experiencing performance issues.

https://sysdig.com/content/c/pf-2022-cloud-native-security-and-usage-report?x=u_WFRi
https://sysdig.com/content/c/pf-2022-cloud-native-security-and-usage-report?x=u_WFRi
https://www.redhat.com/en/blog/why-distroless-containers-arent-security-solution-you-think-they-are
https://www.redhat.com/en/blog/why-distroless-containers-arent-security-solution-you-think-they-are

Basically a "container" is just a Linux process ("con-
tainerized process") isolated through certain kernel fea-
tures like namespaces, capabilities, Control Groups and
chroot ([4]). For example, chroot enables the process
child to get a new filesystem root preventing the process
to read the filesystem of the parent environment. This
way it is possible to make the environment, when viewed
from inside a container, to look like it is running in a
complete operating system with a filesystem structure like
a full Linux system. The Linux feature capabilities divides
privileges traditionally associated with the superuser into
distinct units. For example, giving a process the capability
"CAP_NET_RAW" allows the process to bind to any
address for networking. Control Groups (cgroups) limit
the resources that a process can use, such as memory, CPU
and network input/output, while namespaces control what
it can see. By putting a process in a namespace, you can
restrict the resources that are visible to that process.

Figure 1. Container Isolation [5]

Figure 1 shows a simple illustration of the mentioned
isolation. Apart from the mentioned Linux kernel features,
App Armor and Seccomp are further Linux security mech-
anisms used to enhance the isolation of processes. These
are not directly associated with containers but can be used
additionally to reach even more isolation and security.

B. Container Vulnerability Assessment
Vulnerability Assessment is the process of analysing

vulnerabilities with the goal of remediation. Remediation
is typically a 4-step process: Finding, prioritizing, fixing
and monitoring vulnerabilities. A Software Vulnerability
is a flaw or misconfiguration in an application, library,
function that can be exploited. If vulnerabilities are found,
e.g. by vendors or security researchers, they get published
and assigned an ID, the so called CVE, short for Common
Vulnerabilities and Exposures. CVE is a list of publicly
disclosed computer security flaws. Each vulnerability gets
assigned a CVE ID number to refer to. Also, these CVEs
get a score to express their severity, or criticality, the

so called CVSS, short for Common Vulnerability Scoring
System, "an open framework for communicating the char-
acteristics and severity of software vulnerabilities" ([8]).
It calculates a numerical score from 0-10 indicating the
severity of a vulnerability. Severities can be low, medium,
high or critical and may get calculated based on three
metric groups: Base, Temporal, and Environmental:

Figure 2. CVSS Metric groups [8]

The Base group is focussed on characteristics of a
vulnerability that are constant over time and consists of
Exploitability metrics and Impact metrics. The Temporal
group is focussed on characteristics of a vulnerability that
change over time, like the maturity of available exploit
code, and the environmental group is focussed on char-
acteristics of a vulnerability that are unique to a user’s
environment. Users of CVSS should use the Base Group
Score with Temporal and Environmental Scores specific to
their use case to produce a severity more accurate for their
organizational environment. All these groups will later be
especially important in order to answer RQ2. This work
deals with the current version CVSS3.1, the new version
4.0 with a target official publication date of October 31
2023 will not be used (3).

The Impact metrics are based on the three protection
goals of information security: Confidentiality, Integrity
and Availability. This work is inspired by the CID Triad
definition as defined in [9], because it is already focused
on containers:

• Confidentiality (C) describes the attackers’ ability to
access information in the exploited container.

• Integrity (I) refers to the attackers’ ability to modify
information in the exploited container.

• Availability (A) indicates the impact on the accessi-
bility of the exploited container.

All of CIA metrics have three possible values: None,
Low and High and vulnerabilities consisting of "High"
in each Impact metric are defined as High Impact (HI)
vulnerabilities, as defined in [9]. Also, the definition for
High likely Exploitation (HE), composed of "AC: Low, UI:
None, PR: None", shall be used in this work. It defines
a vulnerability as highly likely exploitable if the attack
vector is low and not user interaction or special privileges
are required ([9]).

Important to note is that also the availability of pubic
exploit code is important: the presence of a simple-to-use

3https://www.first.org/cvss/v4-0/

https://www.first.org/cvss/v4-0/

exploit would increase the CVSS score, while the creation
of an official patch would decrease it. Unfortunately often
there are patches available but still the issues don’t get
fixed which could be that CVSS sets a smaller score if a
patch is available.

Vulnerability Assessment for containers might be
slightly different compared to traditional operation sys-
tems (4). When looking at containerized environments,
many of the expectations for regular OS environments
simply do not hold true, and these differing factors come
into play when assessing any given vulnerability. For exam-
ple, in a traditional OS a mentioned privillege escalation
could make an attacker to compromise the host, while
in a container environment, it permits the attacker to
compromise the container. So for example confidentiality
metric of CVSS could be moved from HIGH to LOW
for containers. Therefore it is possible that the severity
of a vulnerability is different in the context of a certain
container distribution.

Also, when analysing vulnerabilities found in container
images, often times of course generic assumptions need
to be made. Normally it is very important to assess
vulnerabilities also in the context of an application, i.e.
looking at their specific use case, source code, architecture
etc. For example, a use-after-free vulnerability related to
the bluetooth stack of the kernel (5) with Attack vector:
Adjacent, may not be exploited in the context of a web
application, because an attacker would have to be phys-
ically within proximity of the container, which is most
likely running in a large cloud data center like Amazon
Web Services.

C. Container Image Vulnerability Scanners
As mentioned in the introduction, the adoption of

containers also brings new challenges in terms of secu-
rity. Containerized environments require robust security
measures to protect against potential vulnerabilities and
threats. Container security scanners play a crucial role
in identifying and mitigating security risks by analysing
container images and runtime environments. This section
provides an overview of the functionality of container secu-
rity scanners and presents the scanner used for evaluation
later in this paper: twistcli from PrismaCloud.

Container security scanners are specialized tools de-
signed to assess the security posture of containers, specif-
ically focusing on vulnerabilities and misconfigurations.
These scanners automate the process of analysing con-
tainer images and runtime environments, enabling de-
velopers and security teams to proactively identify and
remediate security issues. The scanning process typically
involves the following steps:

1) Image Analysis: Container images are analysed to
identify potential vulnerabilities, or to find secrets or

4https://www.redhat.com/en/blog/containers-vulnerability-risk-
assessment

5CVE-2022-42896

misconfigurations. This analysis includes examining
the software packages and dependencies within the
image, checking for known vulnerabilities, and com-
paring against vulnerability databases and security
advisories.

2) Configuration Audit: Scanners assess the con-
tainer’s configuration to ensure best practices are
followed and potential misconfigurations are flagged.
This includes verifying access control settings, net-
work configurations, and security-related parame-
ters.

The following scanner will be used as part of the
evaluation in this paper:

PrismaCloud Twistcli [10]: Twistcli is a container
security scanner developed by Twistlock (now part of Palo
Alto Networks). It offers comprehensive vulnerability man-
agement and compliance features. Twistcli provides vul-
nerability scanning for both container images and running
containers, offering a holistic view of the containerized
environment’s security. For comparing against vulnera-
bility databases and security advisories, twistcli is using
the so called Intelligence Stream of PrismaCloud (6), a
"real-time feed that contains vulnerability data and threat
intelligence from a variety of certified upstream sources".
Additionally, PrismaCloud has a dedicated research team
which will analyse vulnerabilities and eventually flag them
with a custom ID even before a CVE is published. Per
default, PrismaCloud is using CVSS version 3 and the
National Vulnerability Database (NVD), but in some cases
the returned severity of a vulnerability might differ from
the CVSS base score. This is because PrismaCloud is
using the vendor’s calculation of the impact if available.
It shows the vendor’s calculation when reporting issues
from an image running the vendor’s OS, and falls back
to default CVSS calculation ([11], Example: 7). This is
a good example of utilizing the environmental feature of
CVSS. Also when analysing images from RedHat, twistcli
automatically uses their ratings 8.

III. Related work
This chapter presents the review of existing literature

and research relevant to the topic of this paper. Multiple
papers and resources are recommending "distroless"
approaches or at least using "minimalistic technologies
like Alpine Linux" or "minimal base images" ([2], [4],
[12], [13], 9, 10, 11). It is very common to say the less

6Docs of Prisma Cloud Intelligence Stream
7CVE-2022-48522 in Ubuntu security tracker
8https://access.redhat.com/security/updates/classification/
9https://canonical.com/blog/combining-distroless-and-ubuntu-

chiselled-containers
10https://owasp.org/www-project-kubernetes-top-

ten/2022/en/src/K02-supply-chain-vulnerabilities
11https://developer.ibm.com/learningpaths/scan-container-

images-for-vulnerabilities/best-practices-for-container-image-
security/

https://www.redhat.com/en/blog/containers-vulnerability-risk-assessment
https://www.redhat.com/en/blog/containers-vulnerability-risk-assessment
https://nvd.nist.gov/vuln/detail/CVE-2022-42896
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/technology_overviews/intel_stream
https://ubuntu.com/security/CVE-2022-48522
https://access.redhat.com/security/updates/classification/
https://canonical.com/blog/combining-distroless-and-ubuntu-chiselled-containers
https://canonical.com/blog/combining-distroless-and-ubuntu-chiselled-containers
https://owasp.org/www-project-kubernetes-top-ten/2022/en/src/K02-supply-chain-vulnerabilities
https://owasp.org/www-project-kubernetes-top-ten/2022/en/src/K02-supply-chain-vulnerabilities
https://developer.ibm.com/learningpaths/scan-container-images-for-vulnerabilities/best-practices-for-container-image-security/
https://developer.ibm.com/learningpaths/scan-container-images-for-vulnerabilities/best-practices-for-container-image-security/
https://developer.ibm.com/learningpaths/scan-container-images-for-vulnerabilities/best-practices-for-container-image-security/

components a container has, the more secure it is because
this implies a smaller attack surface. Nevertheless the
goal is to find scientific prove for all of these statements.
A few interesting papers have been found and will be
presented here.

Minification to reduce the number of
vulnerabilities: According to [14], "a strong linear
relationship is found between the number of detected
vulnerabilities and the number of packages present in
the image". Bhupinder Kaur et al. clearly state that
"minification reduces the number of vulnerabilities".
Software components removed during their minification
process were for example compilers, unused Python
packages and unused file compression utilities. As shown
in their results, it is common for container images to hold
hundreds of vulnerabilities, including several of critical
severity. In the discussion section it is stated that it would
be more practical for software developers to identify
and remove unnecessary dependencies when they build
containers, based on their knowledge of the application.
They argue that this is often a complex, error prone
and highly manual task. Therefore it should make more
sense for developers to already have minimal secured base
images available. All these findings clearly add to the
motivation of this research.

Base Systems Security Analysis: Arkadiusz
Maruszczak et.al. [15] are comparing common base
images with google distroless. Their results already
answer a part of RQ1. Because google distroless is
based on debian, also Debian Bullseye was selected for
comparison. Additionally, they added an Alpine-based
image.

Figure 3. Correlation between size of the image and number of
vulnerabilities detected in it [15]

Figure 3 shows the correlation between size of images
and the number of vulnerabilities detected in it. Positive
correlation can be seen for some images (Python, Node.js
and GCC images), also for google distroless, but not
for the java images. Even the distroless java images still

contain a high amount of findings. This should later
be evaluated with the goal of reproduction and further
analysis. Also they conclude that alpine images can be
seen as direct competitor to google distroless. Although
it focusses only on the comparison of base images with
images from the google distroless project, it is now
possible to compare the results of this work with their
results in order to try to reproduce and verify their
findings.

Comparing Severity and Exploits: Luca Allodi et.
al. [16] are providing good reasoning regarding RQ2, as
most organisations are using CVSS alone in order to
prioritize vulnerabilities to remediate. They confirm that
security configuration manager software usually rely on
vulnerability data from the National (U.S.) Vulnerability
Database 12 (NVD) for their assessments. The product
security team the author of this paper works in also just
blindly dictates that "all findings of container scanners
with high or critical severity according to the CVSS need
to be fixed". However, the paper concludes that "fixing a
vulnerability just because it was assigned a high CVSS
score is equivalent to randomly picking vulnerabilities
to fix" and also that "The CVSS base score alone is a
poor risk factor from a statistical perspective". They go
further and came to the conclusion that "the existence
of proof-of-concept exploits is a significantly better risk
factor" and that "fixing in response to exploit presence
in black markets yields the largest risk reduction". Figure
4 shows the data sources used: besides ExploitDB, they
are using "EKITS" (Black-marketed exploits) and "SYM"
(Vulnerabilities exploited in the wild) as additional source
for calculating risk.

Figure 4. Summary of Datasets and Distribution of CVSS scores per
dataset [16]

Worth noting is that public exploitation data is often
hard to find. A common assumption made in academy

12http://nvd.nist.gov

http://nvd.nist.gov

and industry alike is that proof-of-concept exploit data
can be used to measure the state of security of a software
component, but even if public exploits exist, this says
nothing about exploitation "in the wild".

More interesting regarding RQ2, according to [17]
only "2%-5% of published vulnerabilities have observed
exploits in the wild".

Data-Driven Exploit Predictions: Jay Jacobs. et. al.
[18] are presenting a community driven, automated model
to calculate the probability of observing exploitation
activity in the next 30 days. They also claim that
numerous prior studies have shown that CVSS does not
perform well when used to prioritize remediation. The
result of the paper is the Exploit Prediction Scoring
System (EPSS): a scoring system that can accurately
calculate the likelihood of exploits in the wild. It estimates
the probability that a vulnerability will experience
exploitation activity in the wild. It accomplishes this
entirely by data-driven, empirical analysis and it is fully
automated. Among others, they are using the following
data sources for the calculation: ExploitDB, GitHub,
Metasploit, KEV [19], twitter feeds mentioning CVEs.
Each CVE gets an estimate of 0-1 (0% - 100%).

Empirical Study of Exploitability & Impact:
Mubin Ul Haque et. al. conducted an empirical study
to investigate the exploitability and impact of security
vulnerabilities in base-images [9]. A collection of 1,983
distinct security vulnerabilities within base images has
uncovered 13 relevant findings. They aim to provide
developers with insights into potential security risks
associated with base images, encouraging them to
thoroughly assess the security of base images before
building their applications. For researchers, the paper
emphasizes the necessity of creating tools to reduce the
vulnerability of these base images to exploitation. They
used the NVD to study the exploitability and impact of all
found vulnerabilities, and also ExploitDB, metasploit and
VulHub. They mention, that usage of well analysed and
verified base images, reduces number of vulnerabilities in
the final image. Additionally it was declared, that size of
the image may not always correlate with the number of
vulnerabilities, but a trend can be noted.

IV. Research process
This chapter will describe the research done in order to

answer the research questions. First, existing and popular
component reduction tools available and their functional-
ity will be presented. Also, the automated process of build-
ing, scanning and analysing the relevant base images will
be explained. To answer RQ2, comprehensive analysis of
found vulnerabilities was done with focus on exploitability
and impact.

A. Existing component reduction methods
This section will present existing component reduction

tools and document their functionality.
1) Alpine: Alpine is a very small and general purpose

linux distribution with focus on resource efficiency and
security. It is using busybox so containers built off it do
have a shell by default. As Apline Linux is focussing on
resource efficiency, it is very small compared to traditional
Linux distributions ([20]). To make this possible, Alpine
uses the standard C library musl instead of glibc or the
Init-System OpenRC instead of systemd. For example,
musl is a way more simple implementation which prio-
tizes memory safety to avoid side effects and to prevent
unexpected behaviour. This is very important to know, as
certain applications need glibc and therefore cannot run
using the musl library. Alpine is hosted on DockerHub and
also provides ready to use runtime images like node:20-
alpine.

As it is so small and focusses on security it is an
often recommended component reduction method to build
minimal containers and therefore will be included in the
evaluation of this paper.

2) Google Distroless: Google Distroless [1] is an open
source project by Google, published in 2007. It promises a
reduced attack surface of docker containers and therefore
reduce the noise of container scanners. They are providing
production ready runtime images for popular runtimes like
Java and Node.js. Distroless images can be built 2 ways:
using inside your Dockerfile (pretty easy) or build images
yourself using a build tool called bazel. Building an own
Distroless image using a Dockerfile is pretty simple. It is
utilizing the docker concept of so called multi stage builds:
FROM node :20 AS bui ld−env
COPY . /app
WORKDIR /app

RUN npm c i −−omit=dev

FROM gcr . i o / d i s t r o l e s s / nodejs20−debian11
COPY −−from=bui ld−env /app /app
WORKDIR /app
CMD [" h e l l o . j s "]

The example Dockerfile shows the instructions to build
a simple node.js based image. In the first stage, node:20 is
used as base image, followed by copying the source code in
and installing the applications dependencies. Then, in the
second stage, gcr.io/distroless/nodejs20-debian11 is used
as base image, built artefacts are copied over and the
application will get executed. Google distroless does not
officially support the PHP runtime and research showed a
fork of the project [21]. As PHP is a relevant runtime, this
fork will be added to the comparison later.

3) RedHat UBI micro: RedHat UBI (Universal base
images) "micro" [22] is a project by RedHat which enables
trimming the size of images. The benefit here is having the

same Security response team and hardening as with any
image based on RedHat enterprise linux. Unfortunately
they are not providing production ready images so the
build process is a little bit more complicated. Reading a
blogpost from RedHat, criticizing google distroless 13 until
the end, it is just an advertisement for their UBI micro
project. As they are excluding a package manager and
all of its dependencies which are normally pulled into a
container image, it makes sense including them into the
evaluation of this paper.

4) Ubuntu Chisel: Ubuntu "chisel" [23] is an open source
project by Canonical, highly inspired by google distroless.
They are providing some production ready images, but
mostly also building it yourself is needed for certain
runtimes like Node.js. They advocate the creation of im-
ages from the ground up ("FROM SCRATCH"). Starting
from a blank slate is ideal for hosting statically compiled
programs, particularly when image size and build times
are crucial factors. However, using a completely empty
starting point like ’scratch’ might not be the best choice
when you’re working with interpreted languages that rely
on complex environmental requirements. In such cases,
you’ll have to regularly update your base image to include
the latest versions of those necessary components. Being
based on Ubuntu, they promise having critical and high
severity vulnerabilities fixed within 24h which is a good
reason to include them into the evaluation.

5) Chainguard images: Chainguard, a security vendor
founded in 2021, offers minimal, ready to use images
for a wide range of runtimes, including Node.js, PHP
and Ruby [24], calling it the next generation of distroless
images. They are promising "hardened images with 0-
known vulnerabilities, a minimal footprint, and SBOMs.".
Especially the promise of having "0 vulnerabilities" seems
to be very interesting. All these runtime images are based
on "Wolfi", an open source minimal base image, supporting
both relevant c libraries glibc and musl. Also interesting,
these images contain a shell which could ease development,
but also opening the door for a class of attacks where an
attacker can get a shell inside the container. It is definitely
worth including them into the evaluation.

B. Data generation
This section will describe the process of data and

statistic generation.

The process of building the base images,
scanning them and analysing the findings was
automated using the Python programming language.
The related source code can be found here:
github.com/mwager/distroless_evaluation. Also this
source code was used to generate all figures displayed in
this paper.

13https://www.redhat.com/en/blog/why-distroless-containers-
arent-security-solution-you-think-they-are

All builds and scans were executed on a MacBook using
Vagrant [25] for virtualization of Ubuntu 20.04.6 LTS.
The Docker version is 24.0.6, build ed223bc, version of
twistcli is 30.03.122. The codebase basically contains three
important python files:

• scan.py - builds and scans all relevant base images
using docker and twistcli, which creates the JSON files
containing the scanner results for later analysis

• analysis.py - analyses the JSON files generated
by scan.py and adds additional information to each
vulnerability (e.g. EPSS exploit probability). Writes
results/FINAL.json

• results.py - reads results/FINAL.json generated be-
fore and helps generating statistics

The file scan.py contains all relevant base images for
further analysis.

Also, a report from Sysdig [26] on Container Security
shows that Node Package Manager (NPM) and Java are
the most popular open-source non-OS packages (Figure
5) used in containers, which is also why this work will
put focus on these languages regarding the selection of
vulnerabilities to analyse for RQ2.

Figure 5. Top 3rd-party libraries used in containers [26]

To get more CVE information for a given scanner
finding, first idea was to use the CVE Vulnerability API
([27]) and searchsploit to check for public exploits [28].
Also, The CISA Known Exploited Vulnerabilities Catalog
([19]), a database of security issues in applications that
have been published and leveraged by malicious actors,
could be used to match with the CVEs of the scanner
results (currently containing 1014 items). However, as the
work in [18] already doing this inclusion of the mentioned
additional data sources, only the existence of a public
exploit from twistcli and the EPSS-score will be added
to each vulnerability using their API [29].

https://github.com/mwager/distroless_evaluation
https://www.redhat.com/en/blog/why-distroless-containers-arent-security-solution-you-think-they-are
https://www.redhat.com/en/blog/why-distroless-containers-arent-security-solution-you-think-they-are

twistcli categorizes vulnerabilities into two categories:
Operating System (OS)-based and Runtime-based. An
OS-based vulnerability could be for example related the C
library used by the operating system, or binaries available
within the distribution (e.g. curl, openssl, gcc), while
Runtime-based vulnerabilities are more related to the
programming environment (e.g. nodejs NPM packages).

C. Exploitability Analysis
To answer RQ2 (2), the exploitability and impact of

vulnerabilities should be analysed. This section will take
a closer look at a selection of vulnerabilities reported by
twistcli in the data generation phase. Typical exploits
happening inside a container are related to privilege es-
calation, access control or installing malware. For each
vulnerability found, the Common Vulnerabilities and Ex-
posures (CVE) and its CVSS scoring will be checked, as
well as the existence of public proof-of-concept exploits or
if there is data of exploitation in the wild available.

Relevant criteria for the selection of vulnerabilities to
analyse are:

1) Severity: To align with management policies of
remediating only vulnerabilities of high and critical
severity according to the CVSS we only select high
and critical findings

2) Category: Findings are selected for OS-related and
Runtime-based

Additionally, manual intervention was taken place: when
filtering for high and critical findings, 15 critical and 80
high were left. Also, a lot of these remaining findings were
related to the same packages like curl or openssl, so per
package, only one was picked. Regarding Runtime-based,
focus was put on at least one per relevant runtime. As
these criteria are aligned with real-world practise it was
decided against randomly picking them.

1) OS related vulnerabilities: Certain OS-related
vulnerabilities have been manually picked from the scan
results and will be analysed in this section.

CVE-2020-1751
An out-of-bounds write vulnerability was found in

glibc before 2.31 when handling signal trampolines on
PowerPC. Specifically, the backtrace function did not
properly check the array bounds when storing the frame
address, resulting in a denial of service or potential code
execution. The highest threat from this vulnerability is to
system availability
CWE-787: Out-of-bounds Write ("The product writes
data past the end, or before the beginning, of the intended
buffer.")
Found in image: node_16-slim:latest on a Debian
GNU/Linux 10
CVSS v3.1 Base score: 7.0 (HIGH)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H
Analysis:

As the Attack vector is "local", this vulnerability is not
possible to exploit remotely. An attacker would need
direct shell access inside the running container. Also,
Attack complexity is high, meaning it is not trivial to
exploit. Regarding the impact, all three protection goals
are HIGH (CIA).

When accessing the image via a shell, we want to check
if the vulnerable version of glibc is indeed installed:
$ ldd −−ve r s i on
ldd (Debian GLIBC 2.28−10+deb10u2) 2 .28

So it matches the vulnerable version of glibc specified
in the CVE report. No form of authentication is required
for exploitation. Technical details are known, but there is
no publicly available exploit. Upgrading to version 2.31 of
glibc would fix the vulnerability. Nevertheless upgrading
this manually during the image build process is complex
and therefore it is to be assumed that this vulnerability
is available in a lot of production applications running on
the mentioned base image. However, without shell access
an attacker cannot exploit this vulnerability.

CVE-2023-4911
A buffer overflow was discovered in the GNU C
Library’s dynamic loader ld.so while processing the
GLIBC_TUNABLES environment variable. This issue
could allow a local attacker to use maliciously crafted
GLIBC_TUNABLES environment variables when
launching binaries with SUID permission to execute code
with elevated privileges.
CWE-787: Out-of-bounds Write ("The product writes
data past the end, or before the beginning, of the intended
buffer.")
Found in image: ibmjava_jre:latest / Ubuntu 22.04.3
LTS
CVSS v3.1 Base score: 7.0 (HIGH)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Analysis:
As the Attack vector is "local", this vulnerability is also
not possible to exploit remotely. An attacker would need
direct shell access inside the running container. The
difference to the glibc issue before is that now, Attack
complexity is low, meaning it is probably easy to exploit.
Also, a public exploit is available 14. Regarding the
impact, all three protection goals are HIGH (CIA). This
vulnerability is very current (October 2023) and no fix is
available yet.

get a s h e l l i n s i d e the conta ine r :
$ docker run − i t −−ent rypo int / bin /bash ibmjava_jre

check g l i b c ve r s i on
root@f819297027ed :/# ldd −−ve r s i on

14https://www.openwall.com/lists/oss-security/2023/10/03/2

https://www.openwall.com/lists/oss-security/2023/10/03/2

ldd (Ubuntu GLIBC 2.35−0ubuntu3 . 3) 2 .35

Try the POC
$ env − i "GLIBC_TUNABLES=g l i b c . mal loc . mxfast=g l i b c . mal loc . mxfast=A" "Z=‘ p r i n t f ’%08192x ’ 1 ‘ " / usr / bin / su −−help

Usage :
su [opt ions] [−] [<user> [<argument > . . .]]
. . .

The listing tries to execute the POC against version
2.35 like described in the public exploit report does not
lead to a segmentation fault, although there is no fix
available yet. Also reading the explanation of the exploit
report it does not look easy to exploit it at all, so it
seems strange that Attack complexity is low according
to the NVD. This is probably just because there is
a public exploit available. It is very doubtful that an
attacker without comprehensive knowledge can exploit
this easily because it would require a lot of knowledge
in exploiting buffer overflows. Also, as this vulnerability
again needs shell access, an attacker cannot exploit
this vulnerability without first making its way into the
running container (e.g. through a vulnerability in the
custom application which uses the mentioned base image).

CVE-2022-32221
When doing HTTP(S) transfers, libcurl might erroneously
use the read callback (‘CURLOPT_READFUNCTION‘)
to ask for data to send, even when the ‘CUR-
LOPT_POSTFIELDS‘ option has been set, if the
same handle previously was used to issue a ‘PUT‘ request
which used that callback. This flaw may surprise the
application and cause it to misbehave and either send off
the wrong data or use memory after free or similar in the
subsequent ‘POST‘ request. The problem exists in the logic
for a reused handle when it is changed from a PUT to a
POST.
CWE-200: Exposure of Sensitive Information to an
Unauthorized Actor
Found in image: piotrkardasz-php-distroless_8.1 /
Distroless (based on Debian GNU/Linux 11)
CVSS v3.1 Base score: 9.8 (CRITICAL)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Analysis:
Attack vector is network so in theory, this vulnerability
could be exploited remotely. This vulnerability was found
in the image piotrkardasz-php-distroless, which is an open
source fork of google distroless which aims to support
PHP. As seen in the analysis below, this image has a
significant amount of vulnerabilities compared to the
official google distroless images, therefore it should be
assumed that the project has not successfully reached
its goal. Nevertheless exploitability should be checked.
Libcurl is a widely used open-source library for making
network connections written in C and there are bindings

for PHP 15, allowing PHP developers to make HTTP
requests and interact with web services using libcurl
functionality. Therefore it should be assumed that this
is the reason this vulnerability was only found in the
mentioned image and not in one of the official google
distroless images. As PHP could be using the functionality,
exploitation could be possible. However, even as there
is a public exploit available, the example code is based
on the C programming language and exploitation of this
through special crafted HTTP requests against a running
PHP application seems very unlikely. An attacker would
also need to inject PHP code into an application in order
to exploit and if code injection is possible there would be
definitely better exploits.

CVE-2023-0464
A security vulnerability has been identified in all supported
versions of OpenSSL related to the verification of X.509
certificate chains that include policy constraints. Attackers
may be able to exploit this vulnerability by creating a
malicious certificate chain that triggers exponential use
of computational resources, leading to a denial-of-service
(DoS) attack on affected systems. Policy processing is
disabled by default but can be enabled by passing the
‘-policy’ argument to the command line utilities or by
calling the ‘X509_VERIFY_PARAM_set1_policies()’
function.
CWE-295: Improper Certificate Validation
Found in image: node_18.14.1-alpine:latest / Alpine
Linux v3.17
CVSS v3.1 Base score: 7.5 (HIGH)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Analysis:
Attack vector is network and this attack seems not to
be very complex. Regarding the impact, only availability
is high meaning only denial of service can be achieved
when exploiting. There is no public exploit available and
the official severity reported by openssl itself is "low" 16.
An attacker could craft a malicious certificate chain to
trigger denial of service of the system. They could also
use a botnet to overload the app.

$ sudo docker run − i t −−ent rypo int \\
/ bin / sh node_18 .14.1 − a l p i n e
/#
/# opens s l
/ bin / sh : opens s l : not found
/# f i n d / −name opens s l
/ usr / l o c a l / in c lude /node/ opens s l

The listing shows a look into the image. The openssl
binary is not available, but we can see that the nodejs
runtime is using a custom (and vulnerable) installation of

15https://www.php.net/manual/en/intro.curl.php
16https://www.openssl.org/news/secadv/20230322.txt

https://www.php.net/manual/en/intro.curl.php
https://www.openssl.org/news/secadv/20230322.txt

openssl. So exploitability could be possible but it would
only have impact on availability.

CVE-2018-12886
stack_protect_prologue in cfgexpand.c and

stack_protect_epilogue in function.c in GNU Compiler
Collection (GCC) 4.1 through 8 (under certain
circumstances) generate instruction sequences when
targeting ARM targets that spill the address of the stack
protector guard, which allows an attacker to bypass
the protection of -fstack-protector, -fstack-protector-all,
-fstack-protector-strong, and -fstack-protector-explicit
against stack overflow by controlling what the stack canary
is compared against.
CWE-209: Generation of Error Message Containing
Sensitive Information
Found in image: node_16-slim:latest / Debian
GNU/Linux 10 (buster)
CVSS v3.1 Base score: 8.1 (HIGH)
CVSS v3.1 Vector: Vector:
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
Analysis:
Attack vector is network, but looking at the public explot
it seems very complex to trigger it. Also there is no
relation to how this should be possible over network.
Regarding impact, all three protection goals would be
violated. An attacker would need to first get shell access
in order to stack-trace-exploit a certain binary which was
compiled with a vulnerable gcc version. Highly unlikely
and also not interesting from an attacker point of view.
Also the exploit works only against ARM architectures.
So it seems like gcc is lying around in the image and the
scanner just detects and reports it but this would very
unlikey to be a real risk.

CVE-2019-8457
SQLite3 from 3.6.0 to and including 3.27.2 is vulnerable

to heap out-of-bound read in the rtreenode() function when
handling invalid rtree tables.
CWE-125: Out-of-bounds Read
Found in image: php_fpm-buster:latest / Debian
GNU/Linux 10 (buster) and node:14-slim and node:16-
slim
CVSS v3.1 Base score: 9.8 (CRITICAL)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Analysis:
The relevant question here would first be: is the
application using SQLite at all. If not, not exploitable.
And even then it seems pretty convoluted - one would
need to create an invalid database file and convince
SQLite to load it and then get to leak some heap data.
Extremely unlikely.

CVE-2019-17498
In libssh2 v1.9.0 and earlier versions, the

SSH_MSG_DISCONNECT logic in packet.c has an
integer overflow in a bounds check, enabling an attacker to
specify an arbitrary (out-of-bounds) offset for a subsequent
memory read. A crafted SSH server may be able to disclose
sensitive information or cause a denial of service condition
on the client system when a user connects to the server.
CWE-190: Integer Overflow or Wraparound
Found in image: php_fpm-buster:latest / Debian
GNU/Linux 10 (buster)
CVSS v3.1 Base score: 8.1 (HIGH)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:H
Analysis:
Question would be: is the image - next to running
an application - also running an SSH server accepting
incoming connections. This is extremely unlikely. And
even in this extremely implausibly case, this vulnerability
could only get exploited if the SSH server was configured
in a certain case. The public exploit referenced from the
NVD page unfortunately leads to an HTTP 404 status.

2) Runtime related vulnerabilities: Also, certain
Runtime-related vulnerabilities have been manually
picked from the scan results and will be analysed here.

CVE-2023-3824
In PHP version 8.0.* before 8.0.30, 8.1.* before 8.1.22,
and 8.2.* before 8.2.8, when loading phar file, while reading
PHAR directory entries, insufficient length checking may
lead to a stack buffer overflow, leading potentially to
memory corruption or RCE.
CWE-119: Improper Restriction of Operations within
the Bounds of a Memory Buffer
Found in image: php_fpm-buster:latest / Debian
GNU/Linux 10 (buster)
CVSS v3.1 Base score: 9.8 (CRITICAL)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Analysis:
This vulnerability affects the mentioned PHP versions.
According to the NVD information, Attack vector is
Network and complexity is low. All three protection
goals may be violated. This vulnerability relates to the
handling of phar (PHP Archive) files. Phar files are a
way to package PHP applications into a single archive for
distribution and execution. It looks like when these PHP
versions read the directory entries within a phar file, it
does not perform sufficient length checking on the data
it reads. This means an attacker would need to deploy
a malicious phar file containing directory entries with
excessive or incorrect data to overflow the buffer used by
PHP to store this data.

$ sudo docker run − i t \\
−−ent rypo int / bin / sh php_fpm−buster
#
php −−ve r s i on

PHP 8 . 2 . 7 (c l i) (b u i l t : Jun 13 \\
2023 1 1 : 3 8 : 1 3) (NTS)

Checking inside the container we can confirm the
vulnerable PHP version. So an application inside this
container could be exploitable. However, an attacker
would need to be able to inject a malicious phar and
somehow be able to upload it to the server (e.g. file
uploads) and finally trigger processing it via the server’s
PHP interpreter. If successful, the attacker might gain
control over the PHP process and potentially execute
arbitrary code on the target server, leading to remote
code execution. In summary, this vulnerability is not
exploitable without taking into account the context of an
application.

CVE-2023-32002
The use of ‘Module._load()‘ can bypass the policy
mechanism and require modules outside of the policy.json
definition for a given module. This vulnerability affects
all users using the experimental policy mechanism in
all active release lines: 16.x, 18.x and, 20.x. Please note
that at the time this CVE was issued, the policy is an
experimental feature of Node.js.
Found in image: node_18.14.1-alpine:latest / Alpine
Linux v3.17
CVSS v3.1 Base score: 9.8 (CRITICAL)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Analysis:
This vulnerability affects the mentioned Node.js versions.
According to the NVD information, Attack vector is
Network and complexity is low. All three protection goals
may be violated. Node.js has a security mechanism which
is designed to control and restrict which modules can be
loaded. In could be possible that a module gets loaded
even if it doesn’t meet the criteria specified in the policy.
An attacker would somehow need to be able to inject a
payload which directly goes into the module load call,
which could lead to unauthorized code get loaded. It is
an experimental feature and no public exploit is available.
In summary it is highly unlikely to be exploited, but it
would need to be considered in the context of a concrete
application.

CVE-2022-25883
Versions of the package semver before 7.5.2 are vulnerable
to Regular Expression Denial of Service (ReDoS) via the
function new Range, when untrusted user data is provided
as a range.
CWE-1333: Inefficient Regular Expression Complexity
Found in image: node_18.14.1-alpine:latest / Alpine
Linux v3.17
CVSS v3.1 Base score: 7.5 (HIGH)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

Analysis:
This vulnerability affects a Node.js package called
"semver", the semantic version parser for NPM. If an
application is not using this package, it is not exploitable.
If an app would use it, it could be vulnerable to Regular
Expression Denial of Service (ReDoS) via the function
new Range, when untrusted user data is provided as a
range. It would result in a long running calculation of the
regular expression engine, resulting in denial of service.
There is a public exploit and a fix available. Probability
of exploitation within the next 30 days (EPSS) equals
0.0009%.

CVE-2023-26136
Versions of the package tough-cookie before 4.1.3 are

vulnerable to Prototype Pollution due to improper
handling of Cookies when using CookieJar in
rejectPublicSuffixes=false mode. This issue arises from
the manner in which the objects are initialized.
CWE-1321: Improperly Controlled Modification of
Object Prototype Attributes (’Prototype Pollution’)
Found in image: node_14-slim:latest / Debian
GNU/Linux 10 (buster)
CVSS v3.1 Base score: 9.8 (CRITICAL)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Analysis:
This vulnerability affects a Node.js package called
"tough-cookie", an open source library supporting cookie
handling. If an application is not using this package, it
is not exploitable. If an app would use it, an attacker
can expose or modify a limited amount of property
information on certain objects. There is a public exploit
and a fix available. Probability of exploitation within the
next 30 days (EPSS) equals 0.00173%.

CVE-2022-48565
An XML External Entity (XXE) issue was discovered

in Python through 3.9.1. The plistlib module no longer
accepts entity declarations in XML plist files to avoid
XML vulnerabilities.
CWE-611: Improper Restriction of XML External
Entity Reference
Found in image: amazonlinux_2:latest
CVSS v3.1 Base score: 9.8 (CRITICAL)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Analysis:
This vulnerability affects a certain Python library inside
the amazon RHEL image. If an application is not using
Python, it is not exploitable. If an app would use it, a
potential XML exploit would be possible. There is a public
exploit and a fix available. Probability of exploitation
within the next 30 days (EPSS) equals 0.00129%.

CVE-2023-24329

An issue in the urllib.parse component of Python before
3.11.4 allows attackers to bypass blocklisting methods by
supplying a URL that starts with blank characters.
CWE-20: Improper Input Validation
Found in image: amazonlinux_2:latest
CVSS v3.1 Base score: 7.5 (HIGH)
CVSS v3.1 Vector: Vector:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N
Analysis:
This vulnerability affects a certain Python library inside
the amazon RHEL image. If an application is not using
Python, it is not exploitable. If an app would use it, it
would enable an attacker to bypass the protections set by
the developer for scheme and host. It only affects integrity.
There is a public exploit and a fix available. Probability
of exploitation within the next 30 days (EPSS) equals
0.0007%.

3) Demo of a vulnerable application: In order to ac-
tually exploit certain vulnerabilities found by scanners, a
malicious actor would first somehow need to gain shell
access inside the container (CVSS attack vector: local).
The following example shall demonstrate this using a
simple vulnerable node.js application, based on 17. This
application is vulnerable to path traversal and remote code
execution:
const { exec } = r e q u i r e (" ch i ld_proce s s ") ;
. . .
app . get (" / " , (req , r e s) => {

i f (req . query . q) {
exec (req . query . q ,
f unc t i on (e r ror , stdout , s t d e r r) {

r e s . send (stdout) ;
})

}
})

The listing shows a node.js web application controller
which accepts incoming HTTP connections on "/". It will
pass a given query parameter "q" from the URL directly to
a system command in exec(req.query.q,...) (Injection) and
returns the output of the command in the HTTP response.
This way, an attacker could craft special payloads in order
to exploit this vulnerability. For example:
c u r l l o c a l h o s t :3000? q=l s

This command would return the directory contents from
within the container, which is already very bad regard-
ing confidentiality. Using netcat, a special TCP program
available in most Linux distributions, it would be possible
to spawn a reverse shell to an external server, giving this
server full shell access inside the container, with even more
consequences regarding integrity and availability:
payload :

17https://github.com/mwager/nodejs_exploit

$ c u r l l o c a l h o s t :3000? q=\\
nc%2099.222.11.33%204445%20 − e%20/bin /bash

at tacke r l i s t e n s on a remote machine
f o r incoming connect i ons :
$ nc −lvp 4445

As soon as this payload gets executed, the remote
machine accepts the incoming connection and gained full
shell access. If the image was built without an explicit
USER command, the attacker would have root access
inside the container, which is the same as having root on
the host. Unfortunately, Docker images are built as root
by default and root inside the container is the same root
as on the host [4].

Finally, building the image using google distroless, with
only adding 3 lines to the Dockerfile, this attack would
not be possible anymore, because the application could
not spawn a shell and would just throw an exception:

stage 2 − switch to d i s t r o l e s s
FROM gcr . i o / d i s t r o l e s s / nodejs18−debian12 : nonroot
COPY −−from=base / base / base
WORKDIR / base

The example shows that vulnerabilities also need to be
analysed in the context of a certain application.

V. Results

This chapter will present the results of the research with
respect to the two research questions.

A. Amount and Severity of Vulnerabilities

This section will present the results regarding the
amount and severity of findings in order to answer RQ1
(1).

OS-based 531
Runtime-based 32

Table I
Amount of vulnerabilities by category

Table I shows the distribution of vulnerabilities by cat-
egory, clearly as expected the amount of OS-based is way
higher. Public exploits exist only for 48 vulnerabilities, of
which 45 for OS-based and 3 for the Runtime-based ones.

https://github.com/mwager/nodejs_exploit/

Figure 6. Total amount of vulnerabilities

Figure 7. Amount of vulnerabilities with critical severity

Figure 8. Amount of vulnerabilities with high severity

Figures 6, 7 and 8 visualize the total amount and the
amount of critical and high vulnerabilities for all scanned
images. Especially the PHP-, Node.js- and Java-images
show a high amount of findings when not using component
reduction tools. Alpine, most google distroless, UBI micro
and especially all chainguard images do not contain any
findings. The google distroless images for java contain
findings so it was possible to reproduce the work of [15].
Also their conclusion that alpine is a direct competitor was
reproduced. To add to the work presented in the related
paper, we compare not only google distroless with some
debian related images, but also all the other presented
component reduction tools, additionally comparing images
from RedHat, which also contain a fair amount of findings.
The distroless fork of PHP contains a very high amount,
but this is a fork of a master student and seems not
to be maintained anymore. It was added because google
distroless does not officially support the PHP runtime,
but now it is clear that this fork should not be used.
Alternatives like the chainguard PHP image performs way
better (zero findings).

Image total critical high medium low
alpine_latest:latest 0 0 0 0 0
amazonlinux_2:latest 15 1 7 7 0
chainguard-jre_latest:latest 0 0 0 0 0
chainguard-node_latest:latest 0 0 0 0 0
chainguard-php_latest:latest 0 0 0 0 0
chainguard-python_latest:latest 0 0 0 0 0
chainguard-wolfi-base:latest 0 0 0 0 0
chiselled-base_22.04:latest 0 0 0 0 0
distroless-base-debian12:latest 3 0 0 0 3
distroless-java-base-debian12:latest 2 0 0 0 2
distroless-java11-debian11:latest 9 0 0 0 9
distroless-java17-debian12:latest 2 0 0 0 2
distroless-nodejs18-debian12:latest 4 0 0 0 4
distroless-nodejs20-debian12:latest 4 0 0 0 4
distroless-python3-debian12:latest 9 0 0 1 8
distroless-static-debian12:latest 0 0 0 0 0
ibmjava_jre:latest 12 0 1 3 8
node_14-slim:latest 37 2 6 4 25
node_16-slim:latest 31 1 3 2 25
node_18-slim:latest 8 0 0 2 6
node_18.14.1-alpine:latest 13 1 5 7 0
node_20-alpine:latest 0 0 0 0 0
node_20-slim:latest 8 0 0 2 6
php_fpm-buster:latest 63 2 7 7 47
php_latest:latest 14 0 0 2 12
piotrkardasz-php-distroless_8.1-debug 178 9 29 90 50
redhat-ubi8-ubi-micro:latest 0 0 0 0 0
redhat-ubi8-ubi-minimal:latest 32 0 3 14 15
redhat-ubi9-openjdk-11-runtime:latest 71 0 5 45 21
redhat-ubi9-openjdk-17-runtime:latest 70 0 5 44 21
ubuntu-jre_17-22.04_edge:latest 0 0 0 0 0
ubuntu-jre_8-22.04_edge:latest 0 0 0 0 0

Table II
All scanned images and their vulnerability distribution

To have better visibility of the exact amount of find-
ings per image, table II shows all scanned images and
their vulnerability distribution. In total, 32 images were
scanned, containing 564 vulnerabilities (critical: 16, high:
80, medium: 234, low: 234). The amount of images without
any findings equals 13 (40.63%). The base images of
all 5 presented component reduction methods have zero
findings. Only the google distroless Java, Node.js and
Python images contain a very small amount of especially
low and medium severity findings. What stands out is that
all chainguard images for all relevant runtime contain zero
findings, making those the best performing candidates.

Figure 9. Amount of vulnerabilities when component reduced vs.
not component reduced

Figure 9 shows the total amount of vulnerabilities of
images using component reduction vs. images not using

it. Only 33 of a total of 563 (5.86%) vulnerabilities are
left when using component reduction methods, being a
significant reduction of security vulnerabilities. Note that
these 33 only coming from the google distroless images and
are only of low and medium severity.

B. Exploitability of Vulnerabilities
This section will summarize and present the results of

the research regarding RQ2 (2).

Attack vector No. of vulnerabilities
Network 345
Local 176
Adjacent 0
Physical 0

Table III
Attack vector metrics

Attack complexity No. of vulnerabilities
Low 415
High 106

Table IV
Attack complexity metrics

The two tables III and IV show the exploitability
metrics from the CVSS base metrics, specifically attack
vector and attack complexity. Note that for some
vulnerabilities, no CVSS data was available. Around 66%
of findings are, according to the CVSS base metrics alone,
exploitable via network and around 69% have a low attack
complexity. This looks quite surprising at first, but manual
analysis in chapter IV-C has shown that even though
vulnerabilities are exploitable via network according to the
CVSS base metrics, exploitation is still often very unlikely.

Figure 10. EPSS exploitation probability over found vulnerabilities

Figure 10 shows the EPSS exploitation probability
in percent over all found vulnerabilities. Only one of

the vulerabilities, CVE-2023-4863, has an EPSS score
of 38.98%, one is around 9%, two are around 4.7%, 5
are around 1% and the whole rest score below 1%. So
according to the EPSS system, the answer to RQ2 is
clearly "No". The exploitation probability within the next
30 days of most of the findings scores below 1%, mostly
way below 1% (like e.g. 0.00017%).

VI. Discussion
This chapter will summarize the results and discuss

potential conclusions.

A. RQ1
The research question RQ1 was: Does the reduction of

components significantly reduce the amount of vulnerabil-
ities within the container image?. This question can be
answered with a clear Yes.

The images of all presented component reduction meth-
ods contain either no vulnerabilities at all, or at least a
significantly lower amount compared to the other ones.
No findings of critical or high severity were found in
any of the component-reduced images. All statements of
the papers from the related work chapter stating that
component reduction leads to a smaller attack surface
can be reproduced. For example, paper [9] mentions that
Firstly, secured base-images propagate less vulnerabilities
to applications, thus the attack surface in terms vulnera-
bility exploitation and impact regarding CIA can be kept
minimum. This can clearly be confirmed now with respect
to the presented results.

B. RQ2
The research question RQ2 was: Are typical vulnerabil-

ities found through container security scanners actually
exploitable and therefore a risk to the application?. This
question can be answered with a clear No.

Looking only at the CVSS base metrics, like unfor-
tunately lots of organisations are doing, would paint a
different picture. But EPSS and manual analysis of a
manually picked set of findings showed that a) exploitation
probability is very low (below 1%) and b) most of
the manually analysed vulnerabilities are false positives,
are extremely unlikely to be exploitable or need to be
analysed again in the context of a concrete application.
As stated in [16] The CVSS base score alone is a poor risk
factor from a statistical perspective and the existence of
proof-of-concept exploits is a significantly better risk factor
this paper found the EPSS score during research which
makes sense to use as main argument for answering RQ2.
Furthermore, reporting a lot of false positives applies to all
types of scanners. They often report the worst case, based
on CVSS. While they often detect potential vulnerabilities
that could impact system security, it’s important to note
that not all of these vulnerabilities are exploitable. Fre-
quently, exploiting the system requires chaining multiple
vulnerabilities together rather than a single isolated issue.

A great amount of findings also would first need shell
access to the container. If this is the case it would often
make more sense to search for container escapes. Certainly
some vulnerabilities could be used further for privilege
escalation and container escapes. This is why using special
secured host operating systems like Amazon Bottlerocket
18 are a best practise to prevent further compromise.

Even if many findings are not or only very unlikely to be
exploitable, they still have to be analysed and remediated,
at best also in the context of the application using the im-
age. This is a very complex and time-consuming task and
therefore using component reduction tools in the first place
would certainly be better. Additionally, distroless tools
without a shell would prevent all vulnerabilities of attack
vector "local" as shown in the demo of a vulnerable appli-
cation in IV-C3. If a container image does not have a shell
or shell access configured, it might be more challenging for
an attacker to directly access a shell within that container
but not impossible. Attackers can attempt various tech-
niques to gain shell access or execute commands within
a container. The quote from Red Hat mentioned earlier
in IV-A3 highlights a common scenario where attackers
exploit vulnerabilities in a system or application to execute
malicious code, including potentially bringing their "own"
shell into memory. This could be done through techniques
like stack overflows or other exploits. Additional security
measures like cloud workload protection to prevent and
log unauthorized shellcode execution are needed and still
recommended.

VII. Conclusion
The overall goal of this paper was to get a better decision

basis for development and security teams in order to better
support the vulnerability remediation process of container
images. We now clearly have a better base of decisions:
Component reduced images make applications more secure
and significantly reduce the attack surfaces of containers.
Generally, they are very simple to integrate into the devel-
opment life cycle, just in some rare cases more knowledge
and workarounds are needed. They additionally support
the DevSecOps process in various ways because of their
small size. Developer experience is good and the low size
of the images additionally lead to lower costs and better
resource efficiency. Motivation and knowledge of security
unfortunately is often low within application teams, so
management buy-in and good awareness and communi-
cation channels between security teams and developers is
crucial.

Of the five evaluated tools, especially chainguard im-
ages and google distroless stand out. Both drastically
reduce the vulnerability findings of image scanners (chain-
guard even having zero findings for all runtimes), are easy
to use and well documented, free to use and do not have
any licence restrictions - so these are really best conditions

18https://aws.amazon.com/bottlerocket/

https://aws.amazon.com/bottlerocket/

for using them. Chainguard even supports Software Bill
of Materials (SBOM) generation, optimizing supply chain
security, a topic being more and more important in recent
years.

Even though most of the findings have a very low prob-
ability of exploitation, they still should get remediated, so
it still makes more sense to use component reduction in
the first place in order to save time and money. Especially
analysing scanner findings in the context of an application
can be very complex and time consuming, the whole code
base has to be reviewed in relation to the vulnerability.
Also, knowing now that CVSS alone is not the best criteria
for prioritizing vulnerabilities to remediate and more kind
of a compliance exercise, additional measures like EPSS
could and should be used by security teams. The recently
released new version 4 of CVSS could also help, as it
attaches greater importance to the environmental and
temporal metrics.

VIII. Abbreviations

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

CVSSCommon Vulnerability Scoring System

EPSSExploit Prediction Scoring System

NPMNode Package Manager

NVD National Vulnerability Database

OS Operating System

SBOMSoftware Bill of Materials

References

[1] “Google distroless on github.” [Online]. Available: https:
//github.com/GoogleContainerTools/distroless

[2] “Static vulnerability analysis of docker images.” [On-
line]. Available: https://iopscience.iop.org/article/10.1088/
1757-899X/1131/1/012018/pdf

[3] “An attack surface metric,” 2008. [Online].
Available: http://reports-archive.adm.cs.cmu.edu/anon/2008/
CMU-CS-08-152.pdf

[4] L. Rice, “Container security,” 2020. [On-
line]. Available: https://learning.oreilly.com/library/view/
container-security/9781492056690/

[5] “Container security workshop.” [Online].
Available: https://smarticu5.github.io/assets/talks/
Steelcon-Container-Security-Workshop.pdf

[6] “Container escape: All you need is cap (capabili-
ties).” [Online]. Available: https://www.cybereason.com/blog/
container-escape-all-you-need-is-cap-capabilities

[7] S. P. K. Karl Matthias, “Docker praxiseinstieg,” 2020. [Online].
Available: https://www.mitp.de/IT-WEB/Programmierung/
Docker-Praxiseinstieg.html

[8] “Cvss specification.” [Online]. Available: https://www.first.org/
cvss/v3.1/specification-document/

[9] “Well begun is half done: An empirical study of exploitability
and impact of base-image vulnerabilities,” 2022. [Online]. Avail-
able: https://ieeexplore.ieee.org/abstract/document/9825857

[10] “Prismacloud twistcli container security scanner.” [Online].
Available: https://docs.paloaltonetworks.com/prisma/
prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_
scan_images#_scan_images_with_twistcli_Dockerless_scan

[11] “Prismacloud cvss scoring calculation.” [Online]. Available:
https://docs.paloaltonetworks.com/prisma/prisma-cloud/
prisma-cloud-admin-compute/vulnerability_management/
cvss_scoring

[12] “Nist application container security guide,” 2017.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-190.pdf

[13] “Enhancing and integration of security testing in the
development of a microservices environment,” 2020.
[Online]. Available: https://www.utupub.fi/bitstream/handle/
10024/150701/orazi_master_thesis.pdf

[14] “An analysis of security vulnerabilities in container
images for scientific data analysis,” 2021. [Online].
Available: https://academic.oup.com/gigascience/article/10/6/
giab025/6291571?login=false

[15] “Base systems for docker containers - security analysis,”
2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/9911523

[16] “Comparing vulnerability severity and exploits using case-
control studies.” [Online]. Available: https://dl.acm.org/doi/
pdf/10.1145/2630069

[17] “A peek “under the hood” of modern vulnerability
management.” [Online]. Available: https://www.cisco.com/c/
dam/global/en_hk/assets/pdfs/cisco-how-kenna-works.pdf

[18] “Enhancing vulnerability prioritization: Data-driven exploit
predictions with community-driven insights.” [Online].
Available: https://arxiv.org/pdf/2302.14172.pdf

[19] “Cisa known exploited vulnerabilities cat-
alog.” [Online]. Available: https://www.cisa.gov/
known-exploited-vulnerabilities-catalog

[20] M. K. Bernd Öggl, “Docker,” 2021.
[Online]. Available: https://www.rheinwerk-verlag.de/
docker-das-praxisbuch-fuer-entwickler-und-devops-teams/

[21] “Google distroless php fork on github.” [Online]. Available:
https://github.com/piotrkardasz/php-distroless

[22] “Redhat ubi micro.” [Online]. Available: https://www.redhat.
com/en/blog/introduction-ubi-micro

[23] “Ubuntu chisel.” [Online]. Available: https://github.com/
canonical/chisel

[24] “Chainguard images.” [Online]. Available: https://edu.
chainguard.dev/open-source/wolfi/overview/

[25] “Vagrant virtual machine environments.” [Online]. Available:
https://www.vagrantup.com/

[26] “Sysdig 2020 container security snapshot: Key image scanning
and configuration insights.” [Online]. Available: https://sysdig.
com/blog/sysdig-2020-container-security-snapshot/

[27] “Cve api.” [Online]. Available: https://nvd.nist.gov/developers/
vulnerabilities

[28] “Searchsploit / exploitdb.” [Online]. Available: https://www.
exploit-db.com/searchsploit

[29] “Epss api.” [Online]. Available: https://www.first.org/epss/api

https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://iopscience.iop.org/article/10.1088/1757-899X/1131/1/012018/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/1131/1/012018/pdf
http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-152.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-152.pdf
https://learning.oreilly.com/library/view/container-security/9781492056690/
https://learning.oreilly.com/library/view/container-security/9781492056690/
https://smarticu5.github.io/assets/talks/Steelcon-Container-Security-Workshop.pdf
https://smarticu5.github.io/assets/talks/Steelcon-Container-Security-Workshop.pdf
https://www.cybereason.com/blog/container-escape-all-you-need-is-cap-capabilities
https://www.cybereason.com/blog/container-escape-all-you-need-is-cap-capabilities
https://www.mitp.de/IT-WEB/Programmierung/Docker-Praxiseinstieg.html
https://www.mitp.de/IT-WEB/Programmierung/Docker-Praxiseinstieg.html
https://www.first.org/cvss/v3.1/specification-document/
https://www.first.org/cvss/v3.1/specification-document/
https://ieeexplore.ieee.org/abstract/document/9825857
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_scan_images#_scan_images_with_twistcli_Dockerless_scan
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_scan_images#_scan_images_with_twistcli_Dockerless_scan
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_scan_images#_scan_images_with_twistcli_Dockerless_scan
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/vulnerability_management/cvss_scoring
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/vulnerability_management/cvss_scoring
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/vulnerability_management/cvss_scoring
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://www.utupub.fi/bitstream/handle/10024/150701/orazi_master_thesis.pdf
https://www.utupub.fi/bitstream/handle/10024/150701/orazi_master_thesis.pdf
https://academic.oup.com/gigascience/article/10/6/giab025/6291571?login=false
https://academic.oup.com/gigascience/article/10/6/giab025/6291571?login=false
https://ieeexplore.ieee.org/abstract/document/9911523
https://ieeexplore.ieee.org/abstract/document/9911523
https://dl.acm.org/doi/pdf/10.1145/2630069
https://dl.acm.org/doi/pdf/10.1145/2630069
https://www.cisco.com/c/dam/global/en_hk/assets/pdfs/cisco-how-kenna-works.pdf
https://www.cisco.com/c/dam/global/en_hk/assets/pdfs/cisco-how-kenna-works.pdf
https://arxiv.org/pdf/2302.14172.pdf
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.rheinwerk-verlag.de/docker-das-praxisbuch-fuer-entwickler-und-devops-teams/
https://www.rheinwerk-verlag.de/docker-das-praxisbuch-fuer-entwickler-und-devops-teams/
https://github.com/piotrkardasz/php-distroless
https://www.redhat.com/en/blog/introduction-ubi-micro
https://www.redhat.com/en/blog/introduction-ubi-micro
https://github.com/canonical/chisel
https://github.com/canonical/chisel
https://edu.chainguard.dev/open-source/wolfi/overview/
https://edu.chainguard.dev/open-source/wolfi/overview/
https://www.vagrantup.com/
https://sysdig.com/blog/sysdig-2020-container-security-snapshot/
https://sysdig.com/blog/sysdig-2020-container-security-snapshot/
https://nvd.nist.gov/developers/vulnerabilities
https://nvd.nist.gov/developers/vulnerabilities
https://www.exploit-db.com/searchsploit
https://www.exploit-db.com/searchsploit
https://www.first.org/epss/api

	Introduction
	Motivation
	Research objective

	Background
	Containers
	Container Vulnerability Assessment
	Container Image Vulnerability Scanners

	Related work
	Research process
	Existing component reduction methods
	Alpine
	Google Distroless
	RedHat UBI micro
	Ubuntu Chisel
	Chainguard images

	Data generation
	Exploitability Analysis
	OS related vulnerabilities
	Runtime related vulnerabilities
	Demo of a vulnerable application

	Results
	Amount and Severity of Vulnerabilities
	Exploitability of Vulnerabilities

	Discussion
	RQ1
	RQ2

	Conclusion
	Abbreviations
	References

