
Do component reduction strategies
fix your container security nightmares?

SECURE CONTAINERS

1



PRESENTERS

2

Michael Wager 

• Developer, Hacker, Consultant

• Topics: DevSecOps, Automated Security 

Assurance, Vulnerability Management

• Interested in music, traveling, cooking and 

all stuff cyber security related

Michael Helwig

• Strategic Consulting: Security Programs / SSDLC 

/ DevSecOps

• Interested in all things security (Security Testing,

Threat Modeling, Cloud, Reverse Engineering, …)

• Company founder



AGENDA

1. Intro: Container Security Challenge 

2. Component reduction methods ("distroless" concept)

3. Demo (Node.js)

4. Research & Comparison

5. Conclusion

3



WHY ARE CONTAINERS A SECURITY CHALLENGE?

Lack of processes in early adoption

Responsibility Shift (Shift-Left)

Complex attack surfaces

4

• Lack of transparency into vulnerabilites in early adoption phases
(no container scanning, no awareness, no CI/CD integration)

• No trusted repositories / base image selection
• Containers are everywhere (Cloud Services, vendor delivieries, …)

• Containers managed by dev teams; servers and OS traditionally managed by ops 
team.

• "It's not our code"

• Application
• OS layer / container images
• Configuration
• Network
• Hypervisor

Security degrades over time • Security is not constant, new vulnerabilities and attack vectors appear. The 
more you have to maintain, the more effort you need.



WHY ARE CONTAINERS A SECURITY CHALLENGE?

5

"the likelihood of a greater number of vulnerabilities increases with 
the complexity of the software architectural design and code."

https://github.com/OWASP/DevGuide/blob/master/02-Design/01-Principles%20of%20Security%20Engineering.md

Minimize your attack surface



6

CONTAINER SECURITY AND VULNERABILITY TRENDS

Source: https://sysdig.com/blog/2023-cloud-native-security-usage-report/

• High number of images with 
high or critical vulnerabilities

• Most of the vulnerable 
libraries are not actually used 
or needed by the application



7

„IT‘S SECURE BECAUSE IT‘S RUNNING IN A CONTAINER“



8

„IT‘S SECURE BECAUSE IT‘S RUNNING IN A CONTAINER“



COMPARISON WITH OPEN SOURCE COMPONENTS

• Container base images == OSS

• Teams are responsible for the functionality and security of 

OSS dependencies - so they are responsible for the security 

of the selected base images

• Container images have security vulnerabilities too

9



• Goal: identify known vulnerabilities (CVEs) in container images (Also: sensitive information 

and secrets like private keys or passwords inside the container)

• Some tools: trivy, Anchore grype, docker scout, twistcli

• Easy to integrate into CI/CD pipelines

• Limitation: Packages installed with official package managers (RUN apt install...) will be 

detected, manually installing stuff (e.g. "RUN pecl install smbclient-stable" or custom 

compiled code) NOT

10

CONTAINER IMAGE SCANNERS

https://cve.mitre.org/cve/
https://aquasecurity.github.io/trivy/v0.44/
https://github.com/anchore/grype
https://www.docker.com/products/docker-scout/
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_scan_images


Google "distroless"

• Open source project by google (since 
2007)

• Provides prod ready images for 
several runtimes (java, node.js, go)

• Very small in size (e.g. static-
debian11: ~2MB)

Ubuntu "chisel"

• Open source project by Canonical 
(since 2023)

• Provides some prod ready images, 
others need to be built yourself 
(„chiseled“)

• Ubuntu long-term supported (LTS) 
releases (0 critical 0 high findings, 
24h)

RedHat UBI "micro"

• Based on RedHat's "Universal base images"

• RedHat enterprise linux (RHEL) well 
maintained

• Same security response team, the same 
security hardening

• Minimal images containing only runtime environment and the application (no shells, no package managers, etc, removes 
entire classes of attack, fully disarming potential attackers)

• Therefore reduced attack surface (less findings of security scanners)

• Faster transfer times, less storage size, less costs

11

COMPONENT REDUCTION TOOLS

https://github.com/GoogleContainerTools/distroless
https://canonical.com/blog/combining-distroless-and-ubuntu-chiselled-containers
https://www.redhat.com/en/blog/introduction-ubi-micro


Sourcecode available: github.com/mwager/nodejs_exploit​

12

DEMO

http://github.com/mwager/nodejs_exploit


• Research in collaboration with University of Applied Sciences Augsburg

• 3 Research Questions:

• RQ1: Does the reduction of components significantly reduce the amount 

of vulnerabilities within a container image?

• RQ2: Are typical vulnerabilities found through container security scanners 

actually exploitable and therefore a risk to the application?

• RQ3: What are implications on development, deployment and 

maintenance when introducing component reduction methods?

13

RESEARCH

https://www.hs-augsburg.de/


• Publish date: September 2022

• Arkadiusz Maruszczak Et al. are discussing 

security of base systems, focusing on distroless

• Comparison of well known application based 

base images with google distroless images

• Conclusion:

• Component reduction in images doesn't 

always positively affect number of 

vulnerabilities (e.g. OpenJDK images)

• Concerning Python, Node.js and GCC 

images, positive correlation between size 

and vulnerabilities is observed

14

RESEARCH: RELATED PAPER #1

https://ieeexplore.ieee.org/abstract/document/9911523


From paper #2

Paper compares "Vulnerability Severity and Exploits Using

Case-Control Studies":

Our analysis reveals that (a) fixing a vulnerability just because it was assigned a 

high CVSS score is equivalent to randomly picking vulnerabilities to fix; (b) the 

existence of proof-of-concept exploits is a significantly better risk factor; (c) 

fixing in response to exploit presence in black markets yields the largest risk 

reduction

From paper #3

Focus on impact and exploitability of found vulnerabilities in 

base images

Finding 4: HE vulnerabilities in large OS base-images are 

showing an increasing trend

Finding 6: Exploitation of bash vulnerabilities can result in 
complete unavailability of the impacted container

Finding 7: HI vulnerabilities are observed more in large OS 
base-images

Finding 10: Nearly half of DH official base-images contain at 
least a vulnerability with PoC exploit

15

RESEARCH: RELATED PAPER #2 AND #3 (PUBLISHED AUGUST 2014 & MARCH 2022)

https://dl.acm.org/doi/pdf/10.1145/2630069
https://ieeexplore.ieee.org/abstract/document/9825857


• Minimal images containing only runtime environment and the application 

(no shells, no package managers, etc)

• Reduced attack surface

• Less findings of security scanners

• Removes entire classes of attacks

• Faster transfer times, less storage size, resource efficiency => less costs

• Faster build times

16

ADVANTAGES



• Complexity 

Requires deep understanding of all underlying systems, from user i/o to kernel namespace, docker 

internals etc

• Compatibility Issues

Some applications may rely on specific features or libraries that are missing in distroless containers

• Debugging / No shell access 

If your application needs to execute system commands, Distroless won’t work . If you really need a shell in 

production, add it manually inside your Dockerfile

• No support for certain languages

Google Distroless does not support PHP out of the box, but there are solutions available like this fork. You 

need to build it yourself. 

17

DISADVANTAGES & CHALLENGES

https://github.com/piotrkardasz/php-distroless


• Example: node.js app depending on NPM package "node-rdkafka"​

• Wrapper for Kafka C/C++ library librdkafka

• librdkafka depends on zlib1g (native shared library for compression support)​

• Led to runtime error (on startup)

• Using ldd -> libz.so.1

• Solution: manual installation in stage 1, copy over in stage 2

Conclusion here: Good understanding of linux and underlying OS functionality 

required (always a good idea to understand the technology you are using 😉)

18

EXAMPLE OF POTENTIAL ISSUE: MISSING BINARIES



• Teams are responsible for the selection and security assurance of their base images 

(same as with their source code and open source dependencies)

• Distroless methods make your apps more secure

• Depends on your application architecture 

• Recommendations

• Scan your images (fail your build!)

• Do not build your images as root!

• Create awareness / establish community

• Use Cloud Workload Protection or Kubernetes security features

@michael_wager

@c0dmtr1x

www.secure-io.de

Contact

Twitter:

19

CONCLUSION

https://twitter.com/michael_wager
http://www.secure-io.de​

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

