B £\ MUNICH
e |I||'r
SECURE CONTAINERS

Do component reduction strategies |
fix your container security nightmares? |

securelO

e
e ————

—

|

PRESENTERS

secureld

Michael Wager

Developer, Hacker, Consultant

Topics: DevSecOps, Automated Security
Assurance, Vulnerability Management
Interested in music, traveling, cooking and

all stuff cyber security related

Michael Helwig

» Strategic Consulting: Security Programs / SSDLC
/ DevSecOps

* Interested in all things security (Security Testing,
Threat Modeling, Cloud, Reverse Engineering, ...)

* Companyfounder

T ————

& g = . oS
e SR | e ST
y) b

AGENDA

1. Intro: ContainerSecurity Challenge

2. Component reduction methods ("distroless" concept)
3. Demo (Node.js)

4. Research & Comparison

5. Conclusion

S .

WHY ARE CONTAINERS A SECURITY CHALLENGE?

11—

Lack of processesin early adoption * Lack of transparency into vulnerabilites in early adoption phases
(no container scanning, no awareness, no Cl/CD integration)

* No trusted repositories / base image selection
* Containers are everywhere (Cloud Services, vendor delivieries, ...)

Responsibility Shift (Shift-Left) . fontainers managed by dev teams; servers and OS traditionally managed by ops
eam.
* "lt's not our code"

* Application

e OS layer / container images
* Configuration

* Network

* Hypervisor

Complex attack surfaces

Security degrades over time * Security is not constant, new vulnerabilities and attack vectors appear. The
more you have to maintain, the more effort you need.

. ||
] ; |11 \v securel0

-

WHY ARE CONTAINERS A SECURITY CHALLENGE? &

"the likelihood of a greater number of vulnerabilities increases with
the complexity of the software architectural design and code."

Minimize your attack surface

https://github.com/OWASP/DevGuide/blob/master/02-Design/01-Principles %200f%20Security%20E ngineering.md

e —3‘4{ = s

CONTAINER SECURITY AND VULNERABILITY T

1 RRRAR securel0 mmm" ";% fi
| Ll p—[]]] 11

REND e

. High number of images with 13%
high or critical vulnerabilities + Fix available

of |mages‘have of images have Sur il patilied 71%
high or critical low, medium or
vulnerabilities no vulnerabilities

* Most of the vulnerable I L
. . % + Exploitable
libraries are not actually used = -
or needed by the application

. . Non-0S vulnerabilities by severity N
OS vulnerabilities by severity
High and Low and High and Low and
critical medium crifical medium
97% 48%

Source: https://sysdig.com/blog/2023-cloud-native-security-usage-report/

— — =

rsif,

T ————

,IT‘S SECURE BECAUSE IT'S RUNNING IN A CONTAINE s

M-

"]

e~ P e [l i o
T T S B e i < S Tl
= or o - ¢ A 8 G

COMPARISON WITH OPEN SOURCE COMPONENTS £ -

1

ALL MODERN DIGITAL

e Containerbase images == 0SS INFRP\‘E)JT&)CTURE
* Teams are responsible for the functionality and security of . R
OSS dependencies - so they are responsible for the security g ﬁ
of the selected base images
* Containerimages have security vulnerabilitiestoo i
A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003
= A
(=]

e g o

e, Ot T
N g A R AR o R
Y e e [PN x

| | L ""““h securel0 ”“imm 1)1 »

CONTAINER IMAGE SCANNERS Rt

* Goal:identify known vulnerabilities (CVEs) in containerimages (Also: sensitive information
and secrets like private keys or passwords inside the container)

e Some tools: trivy, Anchore grype, docker scout, twistcli

* Easytointegrateinto CI/CD pipelines
* Limitation: Packages installed with official package managers (RUN apt install...) will be

detected, manuallyinstalling stuff (e.g. "RUN pecl install smbclient-stable" or custom

compiled code) NOT

10

https://cve.mitre.org/cve/
https://aquasecurity.github.io/trivy/v0.44/
https://github.com/anchore/grype
https://www.docker.com/products/docker-scout/
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_scan_images

11

e e R

B e [¥
;o e | o 3

e | N\l securelO m' | N ik]
. N RRRRARALL ‘\ !l ,gg’ri-

COMPONENT REDUCTION TOOLS

Google "distroless"

* Opensource project by google (since
2007)

* Provides prod ready images for
several runtimes (java, node.js, go)

* Verysmallin size (e.g. static-
debian11:~2MB)

Ubuntu "chisel"

Opensource project by Canonical
(since2023)

Provides some prod ready images,
others need to be built yourself
(,chiseled”)

Ubuntu long-term supported (LTS)
releases (O critical O high findings,
24h)

RedHat UBI "micro"

* Based on RedHat's "Universal base images"

* RedHat enterprise linux (RHEL) well
maintained

* Same security response team, the same
security hardening

Minimal images containing only runtime environment and the application (no shells, no package managers, etc, removes
entire classes of attack, fully disarming potential attackers)

Therefore reduced attack surface (less findings of security scanners)

Faster transfer times, less storage size, less costs

https://github.com/GoogleContainerTools/distroless
https://canonical.com/blog/combining-distroless-and-ubuntu-chiselled-containers
https://www.redhat.com/en/blog/introduction-ubi-micro

secureld

When it's demo day and you
have to present:

Demo day is such fun

Sourcecode available: github.com/mwager/nodejs_exploit

12

http://github.com/mwager/nodejs_exploit

13

RESEARCH

[——

= S I o

N T e e = =
¥ Rivnacay e e e SRR R A - -
’ e IR e a*ar 3 -

e
He
1

e Research in collaboration with University of Applied Sciences Augsburg

e 3 Research Questions:

RQ1: Does the reduction of components significantly reduce the amount
of vulnerabilitieswithin a containerimage?

RQ2: Are typical vulnerabilitiesfound through containersecurity scanners
actually exploitable and therefore a risk to the application?

RQ3: What are implicationson development, deploymentand

maintenance when introducingcomponent reduction methods?

lll/

Hochschule

Augsburg University of
Applied Sciences

https://www.hs-augsburg.de/

e T

""““t securelO |
| | |

RESEARCH:

350 1400

* Publish date: September 2022

* Arkadiusz Maruszczak Et al. are discussing 1200
security of base systems, focusing on distroless b 1000
* Comparison of well known application based - S
£ s
base images with google distroless images 3 @
[=] 600 &
* Conclusion: 2
o : %0
* Componentreduction inimages doesn't =
200

always positively affect number of
vulnerabilities (e.g. OpenJDK images)

* Concerning Python, Node.js and GCC
images, positive correlation between size

and vulnerabilities is observed

mmsize [MB] —s—number of vulnerabilities

14

https://ieeexplore.ieee.org/abstract/document/9911523

===t

RESEARCH: RELATED PAPER #2 AND #3 (PUBLISHED A: GUST 2014 & MARCH 2022)

From paper #2 From paper #3

Paper compares "Vulnerability Severity and Exploits Using Focus on impact and exploitability of found vulnerabilities in

Case-Control Studies": .
base images

Our analysis reveals that (a) fixing a vulnerability just because it was assigned a
high CVSS score is equivalent to randomly picking vulnerabilities to fix; (b) the Finding 4: HE vulnerabilities in large OS base-images are

existence of proof-of-concept exploits is a significantly better risk factor; (c . . .
f proof-of ptexp gnif y f (c) showing an increasing trend

fixing in response to exploit presence in black markets yields the largest risk

reduction " e Finding 6: Exploitation of bash vulnerabilities can result in
complete unavailability of the impacted container

15000

2
E? E ° Finding 7: HI vulnerabilities are observed more in large OS
=3 &
£ 8 £ g base-images
= | S S S B a— = | B S S |
P e T P e O Finding 10: Nearly half of DH official base-images contain at
least a vulnerability with PoC exploit
EKITS SYM
2
w
2
5 73
g3 g ¥
4] 2 4 6 8 10 0 2 4 6 8 10
CWSS score CWSS score

Fig. 1. Distribution of CVSS scores per dataset.

15

https://dl.acm.org/doi/pdf/10.1145/2630069
https://ieeexplore.ieee.org/abstract/document/9825857

:

. Gemasal MG e o
7 e i i N SR (X e
y e e IR S >

ADVANTAGES

1T ——— 1]

* Minimalimages containingonly runtime environmentand the application

(no shells, no package managers, etc)
* Reduced attack surface
* Less findings of security scanners
* Removes entire classes of attacks
* Faster transfer times, less storage size, resource efficiency => less costs

e Faster build times

16

] I | securelO u“i""m | N
| , i ‘ gan S e R ’ - s -»‘;_,_ WilER 1 0

DISADVANTAGES & CHALLENGES

 Complexity
Requires deep understanding of all underlying systems, from user i/o to kernel namespace, docker
internals etc

 Compatibility Issues
Some applications may rely on specific features or libraries that are missing in distroless containers

 Debugging / No shell access

If your application needs to execute system commands, Distroless won’t work . If you really need a shell in
production, add it manually inside your Dockerfile

* No support for certain languages

Google Distroless does not support PHP out of the box, but there are solutions available like this fork. You
need to build it yourself.

17

https://github.com/piotrkardasz/php-distroless

3 sﬂ‘”

EXAMPLE OF POTENTIAL ISSUE MISSING BINARIES

I ——

* Example: node.js app depending on NPM package "node-rdkafka"

* Wrapper for Kafka C/C++ library librdkafka

» Jibrdkafka depends on zlib1g (native shared library for compression support)
* Led to runtime error (on startup)

e Using Idd -> libz.so.1

e Solution: manual installation in stage 1, copy over in stage 2

Conclusion here: Good understanding of linux and underlying OS functionality

required (always a good idea to understand the technology you are using &))

18

19

g

B [e = i
Y~ oo S e BN Ak G -
’ S o TG =

CONCLUSION

* Teams are responsible for the selection and security assurance of their base images
(same as with their source code and open source dependencies)
* Distroless methods make your apps more secure

* Depends on your application architecture

* Recommendations
* Scan your images (fail your build!)
* Do not build your images as root!
* Create awareness / establish community

e Use Cloud Workload Protection or Kubernetes security features

11—

Contact

Twitter:
@michael wager

@cOdmtrix

www.secure-io.de

https://twitter.com/michael_wager
http://www.secure-io.de​

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

