
Major Project 2020

Master Industrial Security
University of Applied Sciences Augsburg

Project Report

Table 1: Student authors
Student Student ID
Alexander Holzmann 2081881
Markus Kamm 2060929
Michael Wager 2081894

Major Project 2020

Abstract

Today’s enterprises in the producing industry are subjected to continuous
change and are required to adapt their production environment capabilities in
order to remain competitive. This causes continuously increasing complexity
and connectivity of modern production systems. To mitigate potential safety
and security incidents as well as optimization of the companies’ business case,
a configuration management solution represents an effective instrument.

In context of the master course in Industrial Security at the University of
Applied Sciences, Augsburg, a configuration management project is conducted
on a real-world production facility by a group of three students.

Based on a fictional scenario concerning a manufacturer of smartphones
(Yeskia Inc.), an initial analysis of the enterprise environment regarding po-
tential risks is performed and appropriate mitigations are derived. Based on
the mitigations a comprehensive concept phase is proposing various strategies
for realization. Following the V-Model approach, three individual software solu-
tions are designed, implemented and validated. A training course with qualified
training material regarding the developed solutions concludes the project.

i

Major Project 2020

Contents

1. Initialization Phase 1
1.1. Project Setup . 1
1.2. Project Definition . 1
1.3. Project Infrastructure . 2
1.4. Scenario Definition . 3

2. Analysis Phase 4
2.1. Risk Assessment . 4

2.1.1. Step 1 - Risk Identification 5
2.1.2. Step 2 - Risk Analysis . 6
2.1.3. Step 3 - Risk Evaluation . 10
2.1.4. Result - Assets . 11
2.1.5. Result - Mitigations . 13

2.2. Requirements Specification . 16
2.2.1. Business Requirements . 17
2.2.2. Safety Requirements . 17
2.2.3. Security Requirements . 17

2.3. Infrastructure Analysis . 17
2.3.1. Hardware Structure . 18
2.3.2. Software Structure . 21

3. Concept Phase 23
3.1. Concept Development . 23

3.1.1. Concept MIT1 & MIT2 . 24
3.1.2. Concept MIT3 . 26
3.1.3. Concept MIT4 & MIT6 . 28
3.1.4. Concept MIT5 . 31
3.1.5. Concept MIT7 . 33

4. Design Phase 35
4.1. Comprehensive Development Process 36

4.1.1. Tool Research . 36
4.1.2. Architecture Description . 39
4.1.3. Functional Specification . 42

4.2. Detection and logging of unauthorized artifact changes 44
4.2.1. Tool Research . 44
4.2.2. Architecture Description . 45
4.2.3. Functional Specification . 47

ii

Major Project 2020

4.3. Implementation of computer aided spare part replacement process . 47
4.3.1. Tool Research . 47
4.3.2. Architecture Description . 47
4.3.3. Functional Specification . 49

5. Implementation Phase 52
5.1. Release Candidate 1 (RC1) . 52

5.1.1. Implementation (RC1) . 52
5.1.2. Integration Test (RC1) . 60

5.2. Release Candidate 2 (RC2) . 61
5.2.1. MIT 3 - Implementation (RC2) 61
5.2.2. MIT 3 - Integration Test (RC2) 65
5.2.3. MIT 7 - Implementation (RC2) 65
5.2.4. MIT 7 - Integration Test (RC2) 68

6. Validation Phase 68
6.1. System Test Validation - RC1 . 68
6.2. Customer Integration Test - RC1 . 68
6.3. Customer Acceptance Test - RC1 . 69
6.4. System Test Validation - RC2 . 69
6.5. Customer Integration Test - RC2 . 70
6.6. Customer Acceptance Test - RC2 . 70

7. Training 70
7.1. Training Concept Development . 70
7.2. Training Content . 71

8. Outlook 71

9. Abbreviations 72

10.References 74

A. Appendix: Project Scenario 77

B. Appendix: System and Software Requirements Specification 80

C. Appendix: Integration Test 172

D. Appendix: Customer Integration Test 179

E. Appendix: Integration Test RC2 196

F. Appendix: System Integration Test RC2 204

iii

Major Project 2020

G. Appendix: Project Status Reports 212

iv

Major Project 2020

1. Initialization Phase

As first step of the project the initialization phase defines the environment and the
scope of the project, including the scenario definition and limitations. It is clustered
into four subsections, describing the project team setup, the project definition, the
project infrastructure and the fictional scenario.

1.1. Project Setup

The team consists of three students, Alexander Holzmann, Markus Kamm and
Michael Wager, studying the master course "Industrial Security". The planned kick
off meeting represents the official start of this project (06.10.2020). Besides our team
"Configuration Management", three other teams work in parallel on different topics:

• Team Network Security
Concerned with network penetration testing and vulnerability mitigation

• Team Secure Cloud
Implementation of a secure cloud environment, collecting production facility
data

• Team Safety
Development of functional safety extensions related to the production facility

The cross team collaboration is initialized within this early phase of the project to
foster knowledge sharing and synergy leverage. Initiated by the configuration man-
agement (CM) team, a weekly synchronization online meeting is scheduled. Further,
a shared booking calendar for laboratory reservation provides efficient planning of
timeslots, required at the physical facility infrastructure.

1.2. Project Definition

The predefined goal, set by the principal for this project, is to evaluate and setup a
suitable CM system for a virtual real world scenario, represented by the education
facility (figure 1), available in the laboratory (HSA - room H4.12). This system has
the following objectives, among others:

• Ensuring the integrity of the product

• Restoration of previous configurations

• Content and differences of configurations are known

• Traceability of product artifacts

• Tracking of changes

1

Major Project 2020

• Costs and time frames are adhered to

• Determining the status of artifacts

The configuration of the system should be known at all times. In the context of
the project, this should also enable the restoration of previous configurations.

The most important tasks are:

• Search for free tools to document the configuration.

• Set standards for the other groups regarding documentation of the configura-
tions.

• Train all other groups on the topic of configuration management, so that all
configurations are documented.

Figure 1: Education Facility - Lab H4.12

1.3. Project Infrastructure

The team is scheduled for regular work sessions every Monday, Wednesday and
Friday afternoon with a planned amount of 20 hours a week. Due to the lack of

2

Major Project 2020

a real contracting authority for this project, Prof. Dr. rer. nat. Peter Richard is
substituting this role in combination to his position as supervisor. Besides the weekly
cross team synchronization meetings, status report calls are established, aligned to
suitable milestones for the purpose to keep the customer updated regarding the
project status and potential deviations.
To enable seamless collaborative work on any content (e.g. documentation, appli-

cation code, ...) regarding this project, a git [1] repository on Atlassian BitBucket
[2] is initialized. The accumulated commit statistic, outlined in figure 2, indicates
the intense usage of the cloud based infrastructure.

Figure 2: Git repository commit statistic

1.4. Scenario Definition

As the master course is intended to simulate an assignment in a real world set-
ting, the CM project team derived an extensive project scenario, described in
CM_scenario_definition.pdf, appendix A. The scenario simulates the virtual
company Yeskia Inc., with a yearly revenue of 8.3 Billion Euro within the domain
of smartphone production. The facilities distribute ten equal production lines pro-
ducing the A-Phone. Hence the developed CM system could easily be deployed on
all ten production lines with almost no additional effort.
Aligned to a realistic scenario, the development and validation phases are divided

into three different environments:

1. Development environment
The analysis, concept, design and implementation phase is progressed exclu-
sively using the development environment. This environment covers the note-
books of the team members in combination with online available cloud services.

2. System test environment
To install and validate the developed solutions in a realistic scenario, a system
test environment is required. In addition to the development environment,

3

Major Project 2020

real facility hardware (HW) components and production software (SW) appli-
cations are available at the HSA laboratory educational facility. This environ-
ment provides a limited amount of representing components of a production
line.

3. Customer production environment
For final deployment and validation of the CM system infrastructure, access
to the customer environment is required. Due to the virtual character of this
project, a fully equipped production line is not available for final customer
integration of the CM solution. Hence the system test environment at the
HSA laboratory is representing the customer facility in a reduced manner.

The described scenario definition forms the base for all subsequent phases of this
project.

2. Analysis Phase

Following the project initialization phase, the analysis phase represents the entry
point for working on the subject of the assignment. The analysis phase is split into
three main chapters, processed in parallel: risk assessment, requirements specifica-
tion and infrastructure analysis.

2.1. Risk Assessment

A risk assessment identifies and covers all potential risks of a defined scenario area.
Further it contains specific values regarding likelihood as well as the potential neg-
ative impact. A comprehensive risk assessment is mandatory for analyzing and
selecting proper mitigations with the goal of decreasing the overall risk, making
this project a success. Without the availability of this extensive information basis,
the selected and possibly implemented mitigations will not ensure the desired risk
reduction and protection effectively. Considering the business case target, invest-
ing in a comprehensive risk assessment is reasonable from an economic perspective.
In conclusion, the described risk assessment builds up the basis for developing the
subsequent roadmap throughout the whole project. As this project scopes on mit-
igations, achievable with introduction of a CM system, further possible solutions,
mitigating the mentioned risks (e.g. hardening of devices), are not considered here.
Other projects should go ahead, investigating other areas regarding potential miti-
gations, decreasing the overall risk of the facility.
The risk assessment is developed according to the international norm ISO31000:2018

Risk management - Guidelines [3]. As described within the mentioned norm, the
risk assessment is divided into three process steps, risk identification, risk analysis
and risk evaluation.

4

Major Project 2020

The following sections extensively explain the structure and content of the devel-
oped risk assessment.

2.1.1. Step 1 - Risk Identification

Starting the risk assessment, identifying potential risk assets is the first important
step of this process. It is mandatory to discover any possible risk scenario before
going ahead with the subsequent steps of the analysis. To avoid a premature rating
of the assets during identification, the analysis of their impact and likelihood is
postponed to the second step. To capture all potential relevant risks, the layout
analysis of the HW and SW infrastructure is processed in parallel. This structured
approach ensures covering all relevant assets to the extent possible. Interviews
with experts from customer side would have supported this step further in a real
world scenario. Business case irrelevant rated assets are filtered in later stages of
the assessment. As a conclusion, the risk identification list represents an unbiased
collection of any identified possible asset. The complete risk assessment document
(filename: Risk Assessment.xlsm) is available within the project submission folder.

Figure 3 shows an extract of the created risk assessment document, focusing on
step 1 - Risk Identification.

ID Object Vulnerability Actor Threat Motivation Impact

1.1 Database No content change logging

Operator (internal)

SE

Attacker (external)

Attacker (internal)

Modification or corruption of database content lead to

unwanted side effects. Unauthorized access to sensitive

production data.

Unintentional: Improve, adapt and

maintenance of production process

work plans (functions).

Intentional: Production data

modification or theft.

Downtime, Non-conforming

Production, Data theft

2.1 FW No firmware version logging

Siemens Online Support

SE

Attacker (external)

Attacker (internal)

Different FW versions result in incompability with

application software / other components. Firmware

downgrade with the objective to revert security related

patches.

Unintentional: Patches for security

and functional improvements

Intentional: FW downgrade attack

Downtime, Non-conforming

Production, Safety incident, Data theft

2.2 APP SW No application SW version logging Dev, SE Changes in application SW lead to unwanted side effects

Unintentional: Improve, adapt and

maintenance of software- or safety

functions

Downtime, Non-conforming

Production, Safety incident

2.3 APP SW

Missing continous surveillance of

application SW binary integrity

Dev, SE

Attacker (external)

Attacker (internal)

Changing application code without version increment to

hide manipulation.

Intentional: Bypass release

management, Injection of malicous

code

Downtime, Non-conforming

Production, Safety incident, Data theft

2.4 APP SW

Missing traceability of application SW

content-related changes Dev, SE

Missing traceability of content-related changes in

application SW lead to excessive efforts for rollback or

incident investigation.

Unintentional: Improve, adapt and

maintenance of software- or safety

functions

Downtime, Non-conforming

Production, Safety incident

2.5 Para No paramenter value change logging

Dev, SE

Attacker (external)

Attacker (internal)

Missing traceability of parameter changes lead to

unwanted effects, excessive efforts for rollback or

incident investigation required.

Unintentional: Improve, adapt and

maintenance of parameter values.

Intentional: Manipulation of

functionality

Downtime, Non-conforming

Production

3.1 FW No firmware version logging

Siemens Online Support

SE

Attacker (external)

Attacker (internal)

Different FW versions result in incompability with other

components. False analog calibration data can lead to

incorrect sensor indications.

Unintentional: Patches for security

and functional improvements

Intentional: FW downgrade attack

Downtime, Non-conforming

Production, Safety incident, Data theft

3.2 Config

No configuration data value change

logging

Siemens Online Support

SE

Attacker (external)

Attacker (internal)

Missing traceability of configuration changes enables

manipulation of calibration data, leading to deviation of

sensor/actor input and output values.

Unintentional: Configuration data

change for fast testing or setup.

Intentional: Manipulation of

production process.

Downtime, Non-conforming

Production, Safety incident

1 - Festo MES4 System

2 - Siemens Simatic S7 ET200SP CPU1515-SP

3 - I/O Link ET200SP IM155-6PN-HF

Step 1 - Risk Identification

1Figure 3: Risk Assessment - Step 1 - Risk Identification

The following columns of the table build up the relevant data identifying and
describing each asset:

5

Major Project 2020

1. ID
A unique ID for identification of the described asset, used as reference through-
out the project report and its additional documents. The Id (X.Y) is structured
as follows.

• X: Identifying the HW component of the production facility as hook for
identifying the embedded objects

• Y: Asset referenced to the component X

2. Object
The specific artifact of the component, subjected to the described risk. The
objects cover any SW artifact as well as HW items.

3. Vulnerability
This field states the specific vulnerability regarding the component and the
related artifact. This information supports later evaluation of possible mitiga-
tions.

4. Actor
Potential actors to consider regarding each asset. The list of actors differs
between assets, e.g. remote attackers are not relevant for local access limited
threats.

5. Threat
The threat executed by an actor, potentially leading to a negative impact.

6. Motivation
The specific motivation or indirect reason (e.g. development of new function-
ality), triggering the actor to execute the threat.

7. Impact
The potential impact scenario classification of the assets without impact values.

The comprehensive amount of information, evaluated during the identification
phase, enables a better estimation of the assets likelihood and the potential negative
impact value in phase 2 of the risk assessment.

2.1.2. Step 2 - Risk Analysis

After identification of relevant assets, step 2 of the risk assessment covers the analysis
of their likelihood and the potential negative impact as concrete values. The given
numbers are best guess estimations, based on the evaluated infrastructure informa-
tion and the scenario definition. The result builds up the input data for filtering the

6

Major Project 2020

identified assets regarding their criticality in consideration with the specific busi-
ness case threshold of Yeskia Inc. The mentioned values are related to one single
production line.
Figure 4 shows an extract of the created risk assessment document, scoping step

2 - Risk Analysis.

ID Object Vulnerability Events (year)
Probability of occurrence

(relative)
Impacts (year)

Impact:

Downtime
Impact: NCP Impact: SI Impact: DT Impact sum Risk w/o CM

1.1 Database No content change logging 7 0,125 0,875 31.511,42 € 693.033,32 € 0,00 € 1.500.000,00 € 2.224.544,74 € 1.946.476,65 €

2.1 FW No firmware version logging 4 0,25 1 73.526,64 € 126.006,06 € 9.000,00 € 200.000,00 € 408.532,70 € 408.532,70 €

2.2 APP SW No application SW version logging 4 0,125 0,5 378.137,03 € 504.024,23 € 50.000,00 € 0,00 € 932.161,26 € 466.080,63 €

2.3 APP SW

Missing continous surveillance of

application SW binary integrity 1 0,5 0,5 472.671,29 € 399.019,18 € 25.000,00 € 600.000,00 € 1.496.690,47 € 748.345,24 €

2.4 APP SW

Missing traceability of application SW

content-related changes 4 0,0625 0,25 819.296,90 € 945.045,44 € 9.000,00 € 0,00 € 1.773.342,33 € 443.335,58 €

2.5 Para No paramenter value change logging 4 0,2 0,8 42.015,23 € 378.018,17 € 0 0 420.033,40 € 336.026,72 €

3.1 FW No firmware version logging 4 0,0625 0,25 73.526,64 € 115.505,55 € 9.000,00 € 200.000,00 € 398.032,20 € 99.508,05 €

3.2 Config

No configuration data value change

logging 0,5 0,5 0,25 68.274,74 € 189.009,09 € 9.000,00 € 0,00 € 266.283,83 € 66.570,96 €

1 - Festo MES4 System

2 - Siemens Simatic S7 ET200SP CPU1515-SP

3 - I/O Link ET200SP IM155-6PN-HF

Step 2 - Risk Analysis
(one production line)

1

Figure 4: Risk Assessment - Step 2 - Risk Analysis

The subsequent described columns outline the required index values:

1. Events (year)
The estimated number of event occurrences per year. The event describes all
executed actions (e.g. SW development, Firmware (FW) update) not neces-
sarily leading to an incident.

2. Probability of occurrence (relative)
The probability of a negative impact for each occurred event

3. Impacts (year)
The calculated number of events with negative impact on year base (no. of
events * probability of occurrence)

4. Impact: Downtime
The absolute impact value for the downtime scenario within each asset and
impact occurrence

7

Major Project 2020

5. Impact: NCP
The absolute impact value for the non-conforming production time within each
asset and impact occurrence

6. Impact: SI
The absolute impact value for the safety incident scenario within each asset
and impact occurrence

7. Impact: DT
The absolute impact value for the security data theft scenario within each
asset and impact occurrence

8. Impact sum
The sum of all four impact scenarios. This value represents the expected
impact amount for each impact occurrence.

9. Risk w/o CM
This value represents the yearly expected absolute impact amount for one pro-
duction line. This value considers the impact and the likelihood of incidents.

For estimation of the specific potential impact values for a possible impact occur-
rence, the business scenario of Yeskia Inc. is developed and summarized within a
reference table, shown in figure 5. The calculations covered in the risk analysis step
of the risk assessment are directly linked to these values to ensure consistent and
comparable results.

Downtime
Basic production cost(year) 50.000.000 €
Loss of sales (hour) 20.552 €
Impact (hour) 26.260 €

Non conforming production
Basic production cost(year) 50.000.000 €
No. of devices (hour) 105 €
Prod costs (device) 249 €
Impact (hour) 52.503 €

Safety incident
Small physical damage 180.000 €
Large physical damage 500.000 €
Human harm 150.000 €
Human death 1.500.000 €

Data theft
Small 4.000.000 €
Large 10.000.000 €

Impact Estimation

1

Figure 5: Risk Assessment - Impact Estimation

8

Major Project 2020

1. Downtime
In case of facility downtime, the factory is not able to produce devices using
the affected production line.

• Basic production cost (year)
The basic production cost represents the amount of budget still required,
even without active production (e.g. facility costs, personnel costs, IT
infrastructure costs, ...)

• Loss of sales (hour)
The number of devices not sold due to unavailability within the market

• Impact (hour)
The resulting impact value per hour (hourly basic costs + loss of sales)

2. Non-conforming production (NCP)
Malfunction of the production facility can lead to non conforming production
(NCP) resulting in (partial) defective devices produced.

• Basic production cost (year)
As the devices are not sellable, the first expense equals the production
line downtime costs.

• No. of devices (hour)
The production capacity of one production line in number of devices per
hour

• Production costs (device)
The material investment costs for each individual device (lost with each
defective device)

• Impact (hour)
The calculated impact value per hour (hourly downtime costs + material
expense of defective produced devices per hour)

3. Safety incident
Besides the production factors, potential safety incidents leads to undesired
costs, too.

• Small physical damage
Constant defined value for a small physical damage of the facility

• Large physical damage
Constant defined value for a large physical damage of the facility

• Human harm
Constant defined value for a human harm scenario

• Human death
Constant defined value for a human death scenario

9

Major Project 2020

4. Data theft
Security issues could lead to potential data theft scenarios.

• Small
Constant defined amount for a small data theft scenario

• Large
Constant defined amount for a large data theft scenario

The developed analysis values are mandatory for evaluating the assets (step 3)
and selecting the most critical tasks to implement effective mitigations. The relevant
result of the risk analysis phase is visually summarized in figure 7.

2.1.3. Step 3 - Risk Evaluation

After identification and risk analysis of the assets, step 3 of the risk assessment
covers the potential risk reduction implementing suitable mitigations. As mitiga-
tions are able to reduce but usually not completely eliminate the risk, the result
of step 3 contains the residual risk considering CM relevant mitigations. In a real
world scenario, the risk reduction of each asset is individually compared against the
effort implementing the linked mitigation, resulting in the return on invest (ROI)
ratio. The implementation effort for mitigations, covering multiple assets, could be
distributed. The mentioned values are related to one single production line.
Figure 6 shows an extract of the created risk assessment document, scoping step

3 - Risk Evaluation.
The subsequent described columns outline the required index values:

1. Residual impact with CM
The resulting absolute residual impact value with a suitable mitigation imple-
mented

2. Impact reduction
The absolute impact value reduction achievable with a suitable mitigation

3. Impact reduction (%)
Relative ratio reducing the absolute impact value

4. Impacts (year) with CM
Number of negative impact occurrences with a suitable mitigation imple-
mented

5. Impacts (year) reduction (%)
Relative ratio reducing the impact occurrence number

10

Major Project 2020

ID Object Vulnerability
Residual impact

with CM
Impact reduction

Impact reduction

(%)

Impacts (year)

with CM

Impacts (year)

reduction (%)

Residual Risk (year)

with CM
Risk Reduction

1.1 Database No content change logging 667.363,42 € 1.557.181,32 € 70 0,525 40 350.365,80 € 1.596.110,85 €

2.1 FW No firmware version logging 122.559,81 € 285.972,89 € 70 0,7 30 85.791,87 € 322.740,84 €

2.2 APP SW No application SW version logging 466.080,63 € 466.080,63 € 50 0,35 30 163.128,22 € 302.952,41 €

2.3 APP SW

Missing continous surveillance of

application SW binary integrity 299.338,09 € 1.197.352,38 € 80 0,45 10 134.702,14 € 613.643,09 €

2.4 APP SW

Missing traceability of application SW

content-related changes 532.002,70 € 1.241.339,63 € 70 0,1 60 53.200,27 € 390.135,31 €

2.5 Para No paramenter value change logging 147.011,69 € 273.021,71 € 65 0,4 50 58.804,68 € 277.222,04 €

3.1 FW No firmware version logging 99.508,05 € 298.524,15 € 75 0,175 30 17.413,91 € 82.094,14 €

3.2 Config

No configuration data value change

logging 186.398,68 € 79.885,15 € 30 0,125 50 23.299,84 € 43.271,12 €

Step 3 - Risk Evaluation

1 - Festo MES4 System

2 - Siemens Simatic S7 ET200SP CPU1515-SP

3 - I/O Link ET200SP IM155-6PN-HF

1Figure 6: Risk Assessment - Step 3 - Risk Evaluation

6. Residual Risk (year) with CM
This value represents the yearly expected residual impact amount for one pro-
duction line with a suitable mitigation implemented. This value considers the
residual impact amount and the residual likelihood of incidents.

7. Risk Reduction
The overall amount (likelihood and impact value) of risk reduction achievable
with a suitable mitigation

The relevant result of the risk evaluation phase is visually summarized in figure
8.

2.1.4. Result - Assets

The figure Risk Matrix without CM summarizes the results of step 2 (chapter 2.1.2),
considering all identified assets of the risk assessment, linked using the individual
unique ID. The threshold representing the business case target is drawn as a line,
separating the critical sector (top-right) from the non-critical area (bottom-left). All
assets above the threshold are considered in the subsequent phases of the project.
Assets below the defined threshold are postponed in the current project work and
could possibly be handled in follow-up projects. All identified assets are placed
within the chart, depending on two parameters:

11

Major Project 2020

1. Impact
The estimated absolute value related to one impact occurrence

2. No. impacts / year (likelihood)
The expected occurrences of impacts on yearly base

1.1

2.1

2.2

2.3

2.4

2.5 3.1

3.2

4.1

4.2

4.3

4.4

4.5

5.1

5.2

6.1 7.1 8.1

9.1

9.2

10.1

10.2

10.3

11.1

11.2

11.3

11.4

11.5
11.6

11.7

11.8

11.9 12.1

12.2

12.3

12.4

12.5
12.6

12.7

12.8 12.9

13.1

13.2

0,00 Mio €

0,50 Mio €

1,00 Mio €

1,50 Mio €

2,00 Mio €

2,50 Mio €

0 0,2 0,4 0,6 0,8 1

Impact

No. Impacts / year

Risk Matrix without CM

Figure 7: Risk Assessment - Assets without CM mitigation

The following listed assets are placed above the target threshold limit, hence
classified as critical:

• 1.1 Festo MES4 System - Database - No content change logging

• 2.1 Siemens Simatic S7 ET200SP CPU1515-SP - FW - No firmware version
logging

• 2.2 Siemens Simatic S7 ET200SP CPU1515-SP - APP SW - No application
SW version logging

• 2.3 Siemens Simatic S7 ET200SP CPU1515-SP - APP SW - Missing continous
surveillance of application SW binary integrity

• 2.4 Siemens Simatic S7 ET200SP CPU1515-SP - APP SW - Missing trace-
ability of application SW content-related changes

• 2.5 Siemens Simatic S7 ET200SP CPU1515-SP - Para - No parameter value
change logging

12

Major Project 2020

• 4.4 HMI TP700 - User MGMT - No user management logging

• 5.1 D-Link DAP-1665 - Config - No configuration logging

• 11.4 Festo SBOC-Q-R3C Camera - APP SW - Missing traceability of appli-
cation SW (SPS) content-related changes

• 11.5 Festo SBOC-Q-R3C Camera - APP SW - No application SW version
logging (optical verification program)

• 11.7 Festo SBOC-Q-R3C Camera - APP SW - Missing continuous surveillance
of application SW (optical verification program) binary integrity

• 12.2 KUKA KRC4 Robot Control - APP SW - No robot control application
SW in "KUKA Language" version logging

• 12.3 KUKA KRC4 Robot Control - APP SW - Missing continuous surveillance
of robot control application SW in "KUKA Robotic Language" binary integrity

• 12.4 KUKA KRC4 Robot Control - APP SW - Missing traceability of ap-
plication SW (robot control application SW in "KUKA Robotic Language")
content-related changes

• 13.1 Remaining hardware infrastructure - Missing physical access protection

• 13.2 Remaining hardware infrastructure - No hardware component replace-
ment or modification logging

2.1.5. Result - Mitigations

The identified critical assets are investigated regarding possible mitigations, imple-
menting a CM system within the production facilities, to reduce the overall risk
below an acceptable value. As the assets differ widely with regard to their threats,
the development of various suitable mitigations is required. The following enumera-
tion lists all evaluated mitigations, linked to the assets applied. A short description
outlines the mode of action for each mitigation.

• MIT1: Automatic firmware version logging
FW updates are applied on various HW components due to several reasons
(e.g. security update, new functionality, downgrade attack, ...). Currently, no
tracking of any FW update is available, leading to unknown configurations and
a missing update history. As FW is providing basic low-level functionality and
application programming interfaces (APIs), malfunction or security issues are
not excludable. This mitigation automatically tracks any FW version changes
caused by desired updates or security attacks, sending notification mails to

13

Major Project 2020

the maintenance administrator and finally logging the history of changes for
continuous traceability.
Relevant assets: 2.1

• MIT2: Automatic application version logging
Analogous to MIT1, similar scenario applies to application updates on any
component. This mitigation automatically monitors the installed application
versions, immediately notifying and logging any changes (desired and mali-
cious) leading to potential malfunction or security issue.
Relevant assets: 2.2, 11.5, 12.2

• MIT3: Detection and logging of unauthorized artifact changes
Service engineers have the necessity to change code inside applications. Due to
respecting the complete development process requires time-consuming release
test procedures, the process is often bypassed and the modifications are in-
stalled "stealthy" without increasing the application version. As MIT2 will not
apply for unchanged versions, another mitigation is required. A background
surveillance service periodically verifies the installed executable application bi-
nary of each HW component connected to. In case of compromised content is
detected, the service alarms by sending a notification mail and finally tracks all
occurrences within a detection history database. As attackers pursue the same
strategy with the target of modifying application runtime code for installing
backdoors, this mitigation applies here as well.
Relevant assets: 1.1, 2.3, 11.7, 12.3

• MIT4: Comprehensive development process
Software has a high level of relevance for production facilities as available in
this case. To ensure flawless quality of the produced goods, the quality and con-
sistency of complex software is a very important factor. Unfortunately, many
companies, like Yeskia Inc., still have not invested in developing and imple-
menting such a required development process, supported by suitable tooling.
This mitigation develops and installs a comprehensive development process
implementing tool framework, guiding the users throughout the process and
tracking all relevant change requests as well as modifications. To provide roll-
back possibility in case of production malfunction or component compromise,
the system keeps track of all released states, also called baseline freezes. The
release packages are available for download with a few clicks.
Relevant assets: 1.1, 2.4, 11.4, 12.4

• MIT5: Detection and logging of parameter changes
This mitigation is similar to MIT1 and MIT2, but tracking all changes of

14

Major Project 2020

parameters, configuration settings and the user management content.
Relevant assets: 2.5, 4.4, 5.1

• MIT6: Hardware infrastructure design modification tracking
Analogous to MIT4, the hardware design is also relevant regarding a proper
modification tracking. The mitigation approach is equal to MIT4 but cov-
ers any HW design relevant documentation (e.g. schematics, bill of mate-
rial (BOM), ...) Relevant assets: 13.1, 13.2

• MIT7: Implementation of computer aided spare part replacement process
Replacing defective devices with adequate spare parts by maintenance tech-
nicians defines a special but very important scenario. As complex devices,
as used within Yeskia´s production facilities, are very sensible regarding in-
terface compatibility, replacing parts with newer revisions could lead to unde-
sired behavior of the whole system. Sometimes, the malfunction is not directly
visible after replacement. In this case, it is mandatory to keep track of any re-
placement process, providing the required information for later investigation.
This mitigation implements a computer aided spare part replacement process,
leading the maintenance technician throughout the steps, avoiding submission
mistakes and keeps tracking of any processed component replacements.
Relevant assets: 13.2

This list only considers assets classified as critical. All described mitigations are
applicable to further, non-critical classified HW components as well.
The figure Risk Matrix with CM mitigations illustrates the risk reduction potential

of all assets rated above the business case threshold. The graphic represents the
result values of step 3 (chapter 2.1.3). Each arrow indicates the specific impact and
occurrence reduction for an individual asset. Even if the residual risk of some assets
is still above the threshold level, mitigations by implementing a CM system massively
helps to reduce the risk towards the limit. In these cases, further mitigations beyond
the CM project are suggested (e.g. hardening of devices, implementing processes,
physical access control, ...). In combination with the CM mitigations, the desired
residual risk values could easily be achieved.

15

Major Project 2020

11.4

11.4

11.5

11.5

11.7

11.7

12.2

12.2

12.3

12.3

12.4

12.4

13.1

13.1

13.2

13.2

2.4

2.4

2.5

2.5

4.4

4.4

5.1

5.1

2.2

2.2

2.3

2.3

2.1

2.1

1.1

1.1

0,00 Mio €

0,50 Mio €

1,00 Mio €

1,50 Mio €

2,00 Mio €

2,50 Mio €

0 0,2 0,4 0,6 0,8 1

Impact

No. Impacts / year

Risk Matrix with CM mitigations

Figure 8: Risk Assessment - Potential Risk Reduction with CM mitigation

As the project is based upon a virtual scenario, all values are estimated to the
best of the project teams knowledge. In a real world scenario, the values would
be developed together with the contracting client, by initiation of negotiations and
workshop meetings. Nevertheless, the developed values are the result of intense
evaluations and discussions within the project team, hence they are close to reality.

2.2. Requirements Specification

This chapter describes the process of developing the Software Requirements Spec-
ification (SRS). Requirements define the complete demand regarding the system
and its software implementation of a product. A recommended practice is defined
in IEEE 830-1998 IEEE Recommended Practice for Software Requirements Specifi-
cations [4]. In order to achieve a target-oriented implementation of the mitigations,
defined in the risk assessment, extensive requirements are essential.

The SRS CM_system_software_requirements_specification.pdf in appendix
B describes the structure of documentation and defines specific requirements to all
elaborated mitigation strategies. Due to the limited nature of this project, instead
of extensive tooling, a document-based approach is used. In real projects however,
good tooling is absolutely mandatory, in order to manage the list of requirements
intelligently and ensure traceability of the content. Below we distinguish between
business- and non-business requirements. Each requirement can be of type business,
security, or safety but also be a combination of those.

16

Major Project 2020

2.2.1. Business Requirements

Primary goal of business requirements is to maximize the earnings before interest
and taxes (EBIT) of a company. This is accomplished by reduction of potential
risk leading to financial negative impact. The required effort implementing the
specific mitigations must not exceed the financial outcome of the reduction effect.
In conclusion, the return on investment (ROI) value is targeted as high as possible.

2.2.2. Safety Requirements

In addition to business requirements, the safety aspect is also considered and repre-
sent through proper requirements. Safety, according to IEC-61508 Functional Safety
[5], means the protection of humans regarding harm, the environment and the ma-
chinery. Therefore, the target of safety requirements is to minimize potential harm
and to fulfill the demands described in the stated norm.

2.2.3. Security Requirements

Security defines another area, driven by multiple requesting parties, which needs
to be respected within the requirement specification. According to IEC-62443-3
Security for industrial process measurement and control – Network and system se-
curity [6], the protection regarding industrial cybersecurity have to be considered.
The norm specifies four different security levels (SLs), each describing individual
requirements. The norm ISO 27001 Information technology – Security techniques
– Information security management systems – Requirements [7] addresses similar
security requirements, but with primary focus on information security and security
management. As both norms overlap regarding the main content, and the project
is related to an industrial environment, IEC-62443-3 is chosen for application.

2.3. Infrastructure Analysis

In order to identify components and artifacts relevant to CM, a HW and SW analysis
is conducted on the production line in the laboratory. Supplementary to a received
hands-on training and practical experience of the project group, a multitude of infor-
mation sources such as manuals, technical specifications and electrical drawings are
used to support the analysis. The following section covers the findings of the anal-
ysis, by describing each relevant HW component and its corresponding SW artifacts.

In brief, the concerned exemplary production line is composed of two indepen-
dent, yet interconnected Festo CP Factory modules. The purpose of the set-up
is the emulation of a production line in the domain of a smartphone production.
The core task is the correct installation of one or multiple fuses in a workpiece,
representing a smartphone circuit board. The production cycle includes storage

17

Major Project 2020

and transport of blank and equipped circuit boards, fuse installation and optical
verification (automatic optical inspection (AOI)) of the installation. Communica-
tion between components is established using standardized communication protocols

Each cell is serving a distinct purpose as outlined below:

• CP-F-ASRS32
The CP-F-ASRS32 [8] module is responsible for the storage of the circuit
boards. The circuit boards are stored in a stack-rack layout and inserted/re-
moved by a two-axis picker arm. Each board is separately carried on a pal-
let, which can be identified utilizing an attached radio frequency identifica-
tion (RFID) tag.

• CP-F-RASS-KUKA
The CP-F-RASS-KUKA [9] module is responsible for the installation of the
fuses and optical verification. The installation of the fuses is accomplished
within an assembly rack by a KUKA KR-6 robot. The verification of a suc-
cessful installation is determined by optical inspection using a camera.

Both modules utilize conveyor belts to transport the pallets within each module
and between them. The latter is achieved via a transfer port on the housing of each
module.

2.3.1. Hardware Structure

Figure 9 shows the top level layout of the production line with the identified CM
relevant components.

• Festo-PC
The Festo-PC is situated within the laboratory and contains the relevant SW
components which are used for production line. This includes a variety of SW
for the application code development within the programmable logic controllers
(PLCs), SW for the motor control setup and other SW relevant for the setup
and maintenance of the production line. A central SW component is the Festo-
MES4 [10], which acts as manufacturing execution system (MES) framework.
The Festo-MES4 will be further discussed in section 2.3.2.

• Siemens Simatic S7 CPU1515-SP
The core element of the production line control system is the Siemens Simatic
S7 CPU1515-SP [11], responsible for computing the instructions for the appli-
cation execution, processing input data, subsequent output signal generation
and monitoring of safety functions within the production line. The Simatic S7

18

Major Project 2020

Figure 9: Hardware layout CP-F-RASS-KUKA / CP-F-ASRS32 in Lab H4.12

further performs management of attached device data, controls the commu-
nication of those devices and regulates the temporal order of communication
channel access. Monitoring of safety functions is required in order to achieve
the necessary safety integrity level (SIL) for ensuring the safety of the produc-
tion line. In case of a malfunction or complete loss of the diagnosis, the SIL
could decrease and appropriate safety in the plant is not available anymore.

• Siemens I/O Link ET200SP
The Siemens I/O Link ET200SP [12] provides the actual connection between
the PLC and the attached sensor and actor devices within the utilized com-
munication protocol. Further, it serves as a serial communication adapter
and performs conversion of analog to digital signals and vice versa. Multiple
I/O Link devices can be utilized within a control system to accommodate for
available sensor/actor devices.

• Siemens HMI TP700
The production cells contain a Siemens HMI TP700 [13] device which acts
as a human machine interface (HMI) to facilitate user interaction and dis-
play relevant production data. User inputs are captured using a multi-color
touchscreen display. Within the concerned production line, the HMI is used to
acknowledge error messages, modify parameters and manually initiating the
configuration of RFID tag data.

19

Major Project 2020

• D-Link DAP-1665
A D-Link DAP-1665 [14] access point is used for providing wireless network
access to a mobile robot for material supply. The mobile robot is not utilized
in the production line at the moment and therefore it is out of the scope of
the CM project. Yet, the access point is considered relevant, as it remains an
active device and provides access to the production network.

• Festo FibreOptic Unit SOE4
Workpiece detection on the conveyor belts, assembly mount and fuse supply
rig is achieved by using an optical detection system. The system consists of the
Festo FibreOptic Unit SOE4 [15] acting as a controller as well as a light source
and optical fibers distributed towards their relevant detection areas. When a
workpiece enters a detection area, a light beam consisting of visible infrared,
is interrupted which will yield a signal from the controller to the PLC. The
setup of light thresholds is done via a physical button on the SOE4 device
itself, triggering an internal teach-in function.

• Motor Control C94401
The conveyor belt drive motors are controlled by a C94401 drive motor control
[9] device. The device provides electric load control and offers a dynamic
breaking function, as well as motor drive speed adjustments. The latter is
achieved by altering a potentiometer on the device front.

• MURR MICO 2.6
The MURRMICO 2.6 [16] acts as a central electronic circuit protection device.
In a power-on event of the production cell, the device splits the operating
voltage into two loads and switching the loads to on-state with a time shift of
75ms to avoid system overload. The system specific operating current can be
set by switches on the front side of the device.

• TURCK RFID HUB TBEN
The RFID tag data on each workpiece carrier is accessed via the TURCK RFID
HUB TBEN [17] device, consisting of a hub and connected read/write heads.
When a carrier is aligned with the read/write head, multiple data variables
can be accessed and persistently written on the tag.

• Festo CMMP-AS
The drive motor of each axis of the picker-arm in the storage cell is controlled
and monitored by a dedicated Festo CMMP-AS servo motor controller [18].
The device supplies the motor drive with electrical energy, provides start/stop
and break functions. To enable proper addressing and communication with
the Fieldbus protocols, dual in-line package (DIP) switches are used on the
front of the device.

20

Major Project 2020

• Festo SBOC Camera
The Festo SBOC Camera [19] performs the AOI of workpieces during the pro-
duction process and approves or rejects workpieces for further processing. The
optical verification checks if the color and orientation of the observed work-
piece concur with a predefined target condition. The workpieces are placed
on a verification pad for optical examination. The focus of the lens of the
camera can be manually adjusted for improving image quality and to adjust
for changed environment settings.

• KUKA KRC4
The KUKA KRC4 [20] is the control component for the KUKA robot. In
the CM project, the control device and the robot itself are considered as one
device. The robot is responsible for workpiece handling from the conveyor
to the optical verification rig and to the assembly mount and vice versa. In
addition, it is performing the fitting of fuses into the workpiece. The KRC4
controller provides electricity and control signals to the robot.

2.3.2. Software Structure

In parallel to the HW structure, the analysis of the SW artifacts is described in this
chapter. Safety related functions, other than diagnosis, are not considered here, as
those functions are implemented on a hardware base only. Each of the components
listed below, has certain SW artifacts. However, the component specific artifacts
are often of the same SW type and are responsible for resembling tasks. To address
this, the different SW types are explained in general below and if necessary, more
specific details concerning the respective component is given.

• Firmware The fimware (FW) is responsible for low-level control of the com-
ponent HW, security and basic communication with other components. FW
is generally updated only to improve functionality, address security issues or
provide bug fixes. As the FW is a central part of the component, the manu-
facturers ensure integrity of the FW by utilizing internal checksums or other
measures.

• Application software In contrast to the FW, the application SW is provided
by the operator/user of the equipment. In the context of production systems,
such SW artifacts contain for example execution instructions for the PLC in
order to produce parts, configuration data or diagnosis frameworks. Depend-
ing on the type of application SW, the frequency of changes to the code is
variable. In the concerned production infrastructure, two types of application
SWs are prevalent, the so called SPS-Software contains all data relevant to
execution instructions for the PLC and connected components. In addition,

21

Major Project 2020

some components utilize further application SW, in order to perform internal
configuration and operation.

• Parameter Parameter values are related to the application SW and describe
variables within the execution instructions that are designed to be adjusted in
order to accommodate for setup, service or changing production environments.
The parameter settings, however remain within the boundaries specified by the
application SW instructions.

• Configuration Information related to component identification for network-
ing and component baseline settings are represented by the configuration ar-
tifacts.

The majority of component SW artifacts can be found within the above stated
categories, see table 2.

Table 2: Component software artifact relation
Firmware App. SW Parameter Configuration Other SW

CPU1515-SP + + + o o
I/O Link ET200SP + o o + o
HMI TP700 + + o o + User Mgmt
DAP-1665 + o o + o
FibreOptic Unit SOE4 o o o + o
RFID HUB TBEN + o + o o
CMMP-AS + o o + o
SBOC Camera + + o o + CheckOpti/Kon
KUKA KRC4 + + o o + KUKA KRL

In addition to the above described artifacts, some components implement extended
specific SW artifacts, which are described here:

• Siemens HMI TP700 - User Management
The Siemens HMI offers the option to register multiple accounts with different
sets of permissions and access. This option is realized using the user manage-
ment framework of the base operating system.

• Festo SBOC Camera - CheckOpti
To perform the AOI, the camera utilizes the CheckOpti SW, in which all data
related to the predefined target condition is specified.

• KUKA KRC4 - KRL
Internal communication and execution instructions are realized within the
KUKA robotic language (KRL) framework.

• Festo - MES4
As previously stated, the Festo-MES4 serves as the main SW component for

22

Major Project 2020

production control within the production line. Further, it is used as a reporting
tool for quality related production data, and performs tasks associated with
supervisory control and data (SCADA) systems. All data of the MES4 is stored
in a Microsoft Access database (DB), where all data can be accessed using
SQL commands. The data contains all information regarding the products
to produce, machinery, work plans and production orders [10]. The MES4
communicates with the relevant PLC via acyclic communication to provide
production data and via cyclic communication to acquire machinery status
information and error messages [21].

3. Concept Phase

As described in chapter 2.1.4, the result of the risk evaluation, aligned to the business
case threshold, defines the relevant assets for further consideration in the scope of
this project. In consequence, the concept phase focuses on the following identified
relevant mitigations (refer to chapter 2.1.5 for detailed description)

• MIT1: Automatic firmware version logging

• MIT2: Automatic application version logging

• MIT3: Detection and logging of unauthorized artifact changes

• MIT4: Comprehensive development process

• MIT5: Detection and logging of parameter changes

• MIT6: Hardware infrastructure design modification tracking

• MIT7: Implementation of computer aided spare part replacement process

3.1. Concept Development

The subsequent developed concepts describe the top level architecture design ap-
proach and abstract structure of functionality. These concept specifications define
the base for the design and implementation phases. The concept phase refers to
different actor roles related to the CM domain, available at Yeskia Inc.

• Administrator
The Administrator is responsible for the installed server infrastructure regard-
ing configuration, maintenance and user management.

• Release Manager
The release manager is responsible for defining and creating projects within
the CM system. Further, planning, coordination and final approval of project
releases describe his main tasks based on defined projects.

23

Major Project 2020

• Service Engineer
As direct interface to the customer, the service engineer is one of the primary
sources for required product changes. Contributing issues using the CM sys-
tem, customer related change requests are also taken into account for planned
future releases.

• Developer
Besides creating tickets for change requests, the developer mainly contributes
with implementing assigned tickets for planned releases.

• Maintenance Engineer
The maintenance engineer maintains the facilities by replacing defective com-
ponents with adequate spare parts.

3.1.1. Concept MIT1 & MIT2

Automatic firmware & application version logging
The CM provides a service for automatic software version surveillance of control &

monitoring components, integrated in the production facility. Monitoring all herein
installed software sections enables detection of artifact individual version change
events.

Mitigation objectives:

1. Periodic acquisition of running artifact versions within control and
monitoring components of the production system

The CM System uses external available communication interfaces of the mon-
itoring components to query the desired version information from the com-
ponent. An individual communication adapter handles the communication
between the CM back end and the component. The component-individual
received data is translated in a generic format for further processing.

2. Detection of version value changes compared to last known state
and version change event triggering in case of detected changes

The last known state of surveillance relevant components is available even in
case of reboot or plant shutdown. Therefore, the CM manages a persistent
storage. For each queried event the version is compared to the past version,
and, in case of different values, a version change event is triggered. In case of
equal version values, no further action is needed.

3. Persistent storage of each detected version change event including
relevant event data

24

Major Project 2020

On incoming version change events, the new version value, including relevant
data, should be stored in a history based persistent storage. The stored times-
tamp should identify the precise point in time related to other events.

4. Sending notification email for each detected version change event
including relevant event data

On incoming version change events, the system dispatches a notification email
containing the previous and current version, a timestamp and relevant data.

Architecture specification:

Figure 10: MIT1 & MIT2 - Architecture Concept

Surveillance Daemon:
The surveillance daemon represents the central controlling component, scheduling

the surveillance tasks. The implemented scheduler, inside this component, periodi-
cally triggers the acquisition process to obtain the current version information from
the respective control & monitoring component, installed within the production fa-
cility. The acquisition interval values are adjustable defined inside a configuration
file. After receiving the requested version data, the surveillance daemon passes the
information towards the change detection management service for further processing.

Communication Adapter:
As the production facility is build upon a heterogeneous combination of control

& monitoring components, provided by various manufacturers, each individual com-
munication path could differ regarding used communication protocol and/or data
format. Therefore, several communication adapter implementations harmonize the
specific connection requirements towards a generic API including a standardized
data format.

Change Detection Management Service:

25

Major Project 2020

The change detection management service is responsible for maintaining the last
known version states of all relevant control & monitoring components. To achieve
this functionality, an internal persistent storage keeps track of the required version
information. The stored values can be restored at configuration management service
startup. Using the known state information, the detection service is able to compare
the received version value against the last known value and determine whether the
version has changed. In case of a change event, the service executes the following
tasks:

• Create new version change record: Create a new data record to append the
event related data to the history based persistent storage database.

• Send notification email: Send a notification email using a suitable simple mail
transfer protocol (SMTP) service implementation in combination with a mail
server connection to notify a predefined recipient regarding the version change
event. The destination email address is defined within a global configuration
file.

• Update last known version state entry: Update the correlating data record
within the local persistent known state storage container, using the processed
version value, currently running on the control & monitoring component.

3.1.2. Concept MIT3

Detection and logging of unauthorized artifact changes
Analogous to MIT1 & MIT2 (Automatic firmware & application version logging),

the CM provides a service for automatic software binary content surveillance of
control & monitoring components, integrated in the production facility. Monitoring
all herein installed software sections enables detection of artifact individual binary
content modification events.

Mitigation objectives:

1. Periodic acquisition of running artifact binary content or content
representing checksum within control and monitoring components
of the production system

The CM system uses external available communication interfaces of the mon-
itoring components to query the desired content information from the com-
ponent. An individual communication adapter handles the communication
between the CM back end and the component. The component-individual
received data should be translated in a generic format for further processing.

26

Major Project 2020

2. Detection of binary content modifications compared to last known
state and modification event triggering in case of detected modifi-
cations

The last known state of surveillance relevant components is available even in
case of reboot or plant shutdown. Therefore, the CM manages a persistent
storage. For each queried event the content representing data is compared to
the past content state, and, in case of dissimilarity, a modification event is
triggered. In case of unchanged binary content, no further action is needed.

3. Persistent storage of each detected content modification event in-
cluding relevant event data

On incoming content modification events, the new content representing
dataset, including relevant data, should be stored in a history based persistent
storage. The stored timestamp should identify the precise point in time related
to other events.

4. Sending notification email for each detected content modification
event including relevant event data

On incoming content modification events, the system dispatches a notification
email containing information regarding the affected component and artifact, a
timestamp and further relevant data.

Architecture specification:

Figure 11: MIT3 - Architecture Concept

Surveillance Daemon:
The surveillance daemon represents the central controlling component, scheduling

the surveillance tasks. The implemented scheduler, inside this component, period-
ically triggers the acquisition process to obtain the current binary content dataset

27

Major Project 2020

from the respective control & monitoring component, installed within the produc-
tion facility. The acquisition interval values are adjustable defined inside a config-
uration file. After receiving the requested dataset, the surveillance daemon passes
the information towards the modification detection management service for further
processing.

Communication Adapter:
As the production facility is build upon a heterogeneous combination of control

& monitoring components, provided by various manufacturers, each individual com-
munication path could differ regarding used communication protocol and/or data
format. Therefore, several communication adapter implementations harmonize the
specific connection requirements towards a generic API including a standardized
data format.

Modification Detection Management Service:
The modification detection management service is responsible for maintaining the

last known artifact content states of all relevant control & monitoring components.
To achieve this functionality, an internal persistent storage keeps track of the re-
quired content representing information. The stored datasets could be restored at
configuration management service startup. Using the known state information, the
detection service is able to compare the received content dataset against the last
known state and determine whether the content has been modified. In case of a
modification event, the service executes the following tasks:

• Create new content modification record: Create a new data record to append
the event related data to the history based persistent storage database.

• Send notification email: Send a notification email using a suitable SMTP ser-
vice implementation in combination with a mail server connection to notify a
predefined recipient regarding the content modification event. The destination
email address is defined within a global configuration file.

• Update last known content state entry: Update the correlating data record
within the local persistent known state storage container, using the processed
content dataset, representing the currently running artifact on the control &
monitoring component.

3.1.3. Concept MIT4 & MIT6

Comprehensive development process
A comprehensive development process is absolutely essential for providing suffi-

cient quality of release artifacts in context of highly complex production facilities.
The CM supports the application of such a development process in a substantial

28

Major Project 2020

manner. All phases of the V-model based development process are covered by the
implementation of a suitable CM. The CM considers any change request concerning
software related artifact changes and hardware infrastructure modifications.

Mitigation objectives:

1. Development life-cycle monitoring

The CM is monitoring the development life-cycle of each functional change
request to provide a guided development process.

2. Transparent development documentation

The CM tracks documentation for each functional change request in a history
based manner.

3. Development history traceability

The CM tracks state changes of each functional change request for the complete
time of development to enable detailed process traceability.

4. Ticket state change email notification

The CM sends an email notification for each ticket state change to keep re-
sponsible parties informed regarding the development process.

5. Source code transparency

The CM framework enables source code (incl. HW design schematics) trans-
parency to avoid hidden design changes.

6. Implementation history traceability

The CM tracks code and design changes during implementation phase to pro-
vide history based traceability and comparability.

7. Release planning

The CM supports the release manager regarding strategic release planning,
considering business case and market requirements.

8. Release life-cycle monitoring

The CM keeps track of the actual release life-cycle state to trigger appropriate
actions.

9. Release build process

The CM implements automatic build process functionality to reduce release
generation efforts and to streamline continuous delivery.

29

Major Project 2020

10. Release history traceability

The release management system within the CM facilitates release-comparability,
-traceability and changelog generation.

11. Release email notification

The CM sends an email notification for each release life-cycle state change to
keep responsible parties informed regarding the development process.

Architecture specification:

Figure 12: MIT4 & MIT6 - Architecture Concept

Ticket system
The ticket system is a central component, managing change requests for SW

and HW releases, targeting the HW infrastructure or specific control & monitoring
components of the system. It provides a user interface, allowing different actors
(release manager, service engineer, developer) the creation and administration of
these change requests. The ticket system implements the objectives 1 - 4.

Version control
The version control system is a central component, managing changes to source

code, documentation files and other related source code level content. Every change
to the version control system is directly linked to a ticket. Hence, no source code
changes are possible without a change request. The version control system imple-
ments objectives 5 & 6.

Release management

30

Major Project 2020

The release management supports the release manager regarding the planning
and realization of system releases for the HW infrastructure or specific control &
monitoring components. After evaluation of pending functional change requests
within the change control board (CCB), the release is directly aligned to a desired
set of functional changes. The system keeps track of the release life cycle state to
benchmark the progress against the underlying release plan. Further, a tool frame-
work within the release management provides automatic system release integration,
verification and validation prior to the release deployment. In consequence, the
system supports automatic quality assurance for the release packages. The release
management system is responsible for objectives 7 - 11.

3.1.4. Concept MIT5

Detection and logging of unauthorized parameter changes
Contrary to MIT1 & MIT2 (Automatic firmware & application version logging)

and MIT3 (Detection and logging of unauthorized artifact changes), the CM provides
logging of parameter value changes of control & monitoring components, integrated
in the production facility. Due to value based logging depth, extensive traceability
can be achieved. To provide the necessary synchronized timing requirements, a
polling approach is not sufficient. Hence, the parameter value logging service is
realized using an event based implementation.

Mitigation objectives:

1. Immediate parameter value change messages, triggered from the
control & monitoring component for each parameter value change
event

Control & monitoring components are responsible for actively sending out
parameter value change messages in case values are changed. Each message
contains a key for parameter instance identification and its adjusted value. To
avoid extensive message bursts due to high frequent parameter changes from
the operator, an inhibit time filter is necessary.

2. Listening for reception of parameter value change messages within
the CM

The network message server passively listens for incoming parameter value
change messages. Each identified parameter value change message is instantly
extended by a local timestamp.

3. Persistent storage of all received parameter value change events in-
cluding relevant event data

31

Major Project 2020

All passed parameter value change events from the network message server are
processed within the change monitoring service. On incoming content modi-
fication events, the new content representing dataset, including relevant data,
should be stored in a history based persistent storage. To provide versatile
capabilities related to reporting, a suitable storage strategy is required.

4. Sending report email containing summarized parameter value
change information for a given time period

To avoid extensive email flood caused by value change granular email trig-
gering, a summarized report email is generated and dispatched at a certain,
configurable point in time. This report information regarding the affected
component and artifact, a timestamp and further relevant data.

Architecture specification:

Figure 13: MIT5 - Architecture Concept

Surveillance Daemon:
The surveillance daemon implements the monitoring server component, listening

for incoming parameter value change notification messages. After receiving the no-
tification message from the respective control & monitoring component, the surveil-
lance daemon passes the information towards the change monitoring management
service for further processing.

Communication Adapter:
As the production facility is build upon a heterogeneous combination of control

& monitoring components, provided by various manufacturers, each individual com-
munication path could differ regarding used communication protocol and/or data
format. Therefore, several communication adapter implementations harmonize the

32

Major Project 2020

specific connection requirements towards a generic API including a standardized
data format.

Change monitoring management service:
The change monitoring management service is responsible for tracking incoming

events. In case of a modification event, the service executes the following tasks:

• Create new parameter value change record: Create a new data record to ap-
pend the event related data to the history based persistent storage database.

The stored data is provided towards the surveillance daemon on request for cre-
ating the content for the summary email.

3.1.5. Concept MIT7

Computer aided spare part replacement process
The CM implements the spare part replacement process to support maintenance

personal executing maintenance tasks. This enables a guided process for electronic
replacement documentation as a primary functionality.

Mitigation objectives:

1. Web based portable frontend interface

The CM provides a web based frontend interface for maintaining personal for
the documentation of a completed spare part replacement task. To optimize
usability, the possibilities of selection are guided and checked for incorrect
entries.

2. Persistent storage of replacement task

The CM creates a persistent record for each replacement task from the entered
data to store the data for later usage.

3. Update of persistent inventory database

The CM updates the facility-specific BOM based on replacement task input
data. Due to the CM updating the inventory database, the BOM represents
the current state of the HW infrastructure.

4. Spare part replacement email notification

The CM sends an email notification for each spare part replacement task to
keep responsible parties informed regarding the replacement process.

5. Maintenance task report

33

Major Project 2020

After completion of the replacement task, the CM generates a maintenance
task report containing all relevant information for usage by the maintaining
technician.

6. Spare part replacement journal

On request, the CM provides a chronologically sorted overview of all stored
spare part replacement tasks to gain traceability.

7. Inventory status report

On request, the CM provides a comprehensive overview representing the com-
plete state of the plant, including relevant additional information (e.g. date of
last replacement).

Architecture specification:

Figure 14: MIT7 - Architecture Concept

Spare Part Replacement Maintenance System: The spare part replace-
ment maintenance system is the central component, responsible for managing spare
part replacement tasks. Herein implemented DB connector modules provide the
necessary persistent storage of the complete inventory list, containing all relevant
information regarding installed HW components of the production system. Further,
the connector persistently keeps track of all replacement tasks in a chronological
order. The maintenance technician uses the provided frontend interface to conduct
the documentation of executed spare part replacement tasks. For interoperability
reasons, the frontend implementation is realized using state-of-the-art web based
technology. The current inventory DB contains all elements of the facility BOM
covering the following information:

34

Major Project 2020

• Material equipment identifier (primary key)

• Serial number (if applicable)

• Revision status (if applicable)

• Date of last replacement

The replacement history DB contains the following data items for each replacement
task:

• Task ID

• Maintenance personal ID

• Timestamp

• Material equipment identifier

• Serial number - removed part

• Serial number - installed part

• Revision status - removed part

• Revision status - installed part

• Task comment

For each replacement task, the component appends an individual task record to
the replacement history DB. The desired entry within the inventory database is
updated to ensure the current status of the DB content. Finishing the documentation
process, the system will send a task notification to a recipient, predefined in a global
configuration file.
Additionally, the frontend provides the possibility for generating spare part re-

placement journals and current inventory status reports on request.

4. Design Phase

Within this phase, a detailed design is derived from the underlying mitigation con-
cept, satisfying the linked requirements. The developed design approaches specify
the implementation of the mitigation realization. For each mitigation, the design is
composed of an initial tool research, a software architecture description and a final
functional specification. During tool research phase, free available software solutions
are evaluated regarding suitability for integration within the CM system. Based on
the selected framework, the software architecture design illustrates the integration

35

Major Project 2020

structure incl. component interface interaction. The functional specification de-
scribes each component and its APIs in detail as documentation for the subsequent
implementation phase.

4.1. Comprehensive Development Process

The following sections are related to the mitigation concept MIT4 & MIT6 - Com-
prehensive Development Process, described in chapter 3.1.3.

4.1.1. Tool Research

Release Management System
The release management system provides functionality for automatic continuous
integration, deployment, and delivery of release packages.

1. Jenkins
Jenkins[22] is one of the most popular open source build and release manage-
ment tools, available for a wide range of operating system environments. It
implements a server-client approach enabling flexible distributed build agent
infrastructures. The framework is easily extendable with custom written or
third party plug-ins, and it supports build scheduling based on the cron ex-
pression. Jenkins provides seamless integration of major version control and
ticket system solutions. Notification services are included by default. The
toolset is freely available and open source licensed under MIT[23].

2. GoCD
GoCD[24] implements a free, open source continuous integration and build
system, available for Windows, Linux and OSX platforms. It is licensed under
the Apache License Version 2.0[25]. The complexity of the framework is rather
simple, which supports fast time to initial function, but bears the risk of limi-
tations in later realization phases. Its server-agent infrastructure, combinable
with container based environments, enables flexible distribution approaches.
The system is usually installed on premise, but cloud solutions are possible
via third party service providers, too. The tool offers some interesting features
like build comparison, automatic notification service and graphical dashboard
frontend user interface. The tool documentation is of poor quality.

3. GitLab
GitLab[26] is a free and open source tool suite, providing release management,
issue tracking and version control within one solution package. It is available
as offline version, installable on premise or on distributed cloud based infras-
tructures. The release management system provides a seamless link to the

36

Major Project 2020

internal available version control and issue tracking system if used in combina-
tion. GitLab is widely used in the software development sector as an all-in-one
solution, providing a rich feature set like user authentication or analytic re-
porting. GitLab is licensed under MIT Expat[23].

4. Atlassian Bamboo
Bamboo[27] is a proprietary solution, provided by Atlassian, usable as cloud
service or local installation. Besides its core functionality as release man-
agement system, Bamboo provides distributed build environments integrated
in containerized solutions, parallel builds and automatic triggering of builds,
based on detected changes or time schedules. It best integrates with other tools
of the Atlassian software suite. Release life cycle status reporting is available
via web based frontend or file report generation. Notification mail service is
fully included. The license model grants a trial period for 30 days.

Table 3: Comparison of Release Management System solutions
Jenkins GoCD GitLab Atlassian Bamboo

Availability + free + free + free - 30 days trial
Infrastructure + on premise, cloud + on premise, cloud + on premise, cloud + on premise, cloud
Architecture + client-server + server-agent + distributed builds + distributed
UI/UX o + + +
Flexibility + plug in concept - limited o o
Support + community - poor support + community o proprietary
Feature set + extendable - limited + rich feature set o fixed feature set
License + MIT + Apache 2.0 + MIT Expat - proprietary

Ticket System The ticket system implements functionality supporting a change
request based development processes. Each change request is represented by a ticket
within the system, equipped with a process aligned life cycle. The ticket system is
aiming towards the following objectives: Release planning, development progress
monitoring, link between version control and build system.

1. Atlassian Jira
Jira [28], another component from the Atlassian tool suite, implements a state-
of-the-art ticket system. A free license of the proprietary product is available,
but limited to max. 10 users. As all Atlassian products, Jira provides an
intuitive user interface (UI) and sophisticated user experience (UX).

2. GitLab
As described above, the GitLab suite implements a ticket system called issue
tracking.

3. Redmine
Redmine [29] is a free and open source solution, implementing web based cross-
platform support. It is licensed under GNU General Public License v2 (GPL)

37

Major Project 2020

[30]. The toolset has been available for a long time, hence no longer reflecting
the current state of the art. An email notification service and seamless link to
various version control solutions are integrated within the package.

Table 4: Comparison of Ticket System solutions
Atlassian Jira GitLab Redmine

Availability o free, max. 10 user + free + free
Infrastructure + on premise, cloud + on premise, cloud + on premise, cloud
UI/UX + + o
Flexibility + customizable o limited + customizable
Support o proprietary + community o basic free support
Feature set o fixed feature set + rich feature set + rich feature set
License - proprietary + MIT Expat + GNU GPLv2

Version Control

1. Apache Subversion
Apache subversion (SVN) [31] represents a free available and open source ver-
sion control solution, implementing a centralized oriented single server ap-
proach. SVN was class-leading for many years, since it was first developed in
the year 2000. The tool is licensed under Apache License 2.0 [25]. Due to the
single server architecture, SVN should be considered deprecated.

2. Git
Git [1] is a free and open source distributed version control solution, fulfilling
the latest requirements concerning speed, efficiency and flexibility. Git was
developed by Linus Torvalds[32] to eradicate the disadvantages of existing
solutions available at that time. Git is licensed under GNU General Public
License v2 (GPL) [30]. It is widely used in the software development sector and
represents the current dominating version control solution. GitLab supports
GIT as default version control system providing full integration functionality.

Table 5: Comparison of Version Control System solutions
Apache Subversion Git

Availability + free + free
Infrastructure + on premise, cloud + on premise, cloud
Architecture - single server + distributed
UI/UX + optional + optional
Flexibility o + extensions available
Support + community + community
Feature set + +
License + Apache 2.0 + GNU GPLv2

Release DB
Integrated implementation within release management solution.

38

Major Project 2020

Ticket DB
Integrated implementation within ticket system solution.

Version Control DB
Integrated implementation within version control solution.

SMTP Mail Service
Integrated implementation within release management and ticket system solution.

Tool Research Evaluation
As conclusion of the described comprehensive tool research phase, GitLab proves

to be the best suited solution for release management and ticket system implemen-
tation. Besides the result being the highest scoring solution within the criteria based
comparison, the GitLab tool suite provides the ticket system and release manage-
ment within one closely linked package. Further, GitLab is freely available, licensed
under open source, provides high sophisticated and modern UI/UX and is widely
distributed within the software development sector. Compared to GitLab, Jenkins
provides higher level of flexibility, especially for future extensions. Nevertheless,
the GitLab integrated release management system is used in the first stage of the
project, migrating to Jenkins is a potential option for later enhancement. Git is the
undisputed preferred solution for use as version control within the desired environ-
ment. GitLab easily integrates Git without additional integration effort providing
seamless interoperability.

4.1.2. Architecture Description

The following chapter describes the software architecture design from an integration
level perspective. The implementation is realized using already available software
modules from the GitLab framework, including the core components as well as an
integrated database and frontend web service. Hence, the integration is expected
to be straight forward without significant issues. The integration design approach
is closely aligned with the recommended default architecture of GitLab as shown in
figure 15.

39

Major Project 2020

Figure 15: GitLab simplified integration architecture, from [33].

To realize the concept MIT4 & MIT6, described in chapter 3.1.3, the following
components of GitLab, outlined in figure 15 are used:

1. Puma (GitLab Rails)
Puma represents the main component of the GitLab tool framework, imple-
menting the core functionality of the ticket system and the release management
system. It includes the primary business logic and proper interface adapter
for connecting surrounding software modules.

2. PostgreSQL
A PostgreSQL database instance serves as persistent storage for history based
records (tickets, releases), application metadata and user information (user
accounts, roles, authentication information).

3. Redis
Redis is a fast caching database solution, used to store frequently requested
items like session data, temporary cache information or background job queues
to improve speed and efficiency while reducing reply latency.

4. Gitaly
Gitaly is responsible for communication between Puma and the GIT repository
using remote procedure call (RPC) technology. It serves as an adapter for
integrating the GIT version control implementation.

40

Major Project 2020

5. SMTP Gateway
GitLab provides a SMTP gateway for sending email notifications, implemented
inside Puma.

6. NGINX webserver
NGINX, a popular open source webserver, serving the frontend implementa-
tion for user machine interaction. Restricting the transmission control proto-
col (TCP) access to port 443 (HTTPS only), combined with proper installed
certificates, the communication layer is secured. The certificate based authen-
tication and traffic data encryption permits separation of the server instance
from the clients, even using non-secured network infrastructures.

7. GitLab Shell
GitLab implements an internal secure shell (SSH) interface, providing SSH-
based git sessions as an alternative to the described web based access to the
system.

Installation Environment

Figure 16: Installation environment architecture

The described tool integration architecture is installed within a virtualized envi-
ronment as depicted in figure 16. Virtualization provides the possibility to migrate
the CM server implementation on almost any available machine, including virtual
cloud based server instances, allowing scalability as business grows (multiple produc-
tion lines). Persistent storage database instances are integrated within the container

41

Major Project 2020

as well.
Further a high level of security can be achieved, following this strategy:

• Environment encapsulation
Encapsulated and isolated from the host environment, the guest OS will not
be negatively affected in case of a compromised host OS. Individual user au-
thentication and access policies can be applied, limiting direct operating sys-
tem (OS) access to administrative users only. The virtualization is realized
two-staged: As first layer of encapsulation, Virtual Box is used with its guest
OS sandboxing features. Canonical Ubuntu LTS[34] is installed inside the
virtual machine, acting as guest OS. The CM GitLab server infrastructure is
further encapsulated using Docker[35] realizing the second encapsulation layer.

• Network access control
A firewall implementation filters access from external networks, permitting
connections on selected ports for required services only. This directly mini-
mizes the potential attack vectors, exposed to the untrusted host environment
(e.g. Festo PC). Any further connections are limited to access from inside the
GitLab container to prevent potential security related issues.

Finally, a locally installed SMTP server simulates the required mail server, usually
available within enterprise networks. Users can gain access to mailboxes using the
provided webmailer frontend of the service.

4.1.3. Functional Specification

Besides the wide spectrum of available features, provided by this CM infrastructure,
the most essential functions are described here by means of specific use cases:

Release Management

• Release Project Definition
The release manager creates a project within the CM, defining the scope of
the release. Projects are typically closely linked to the hardware infrastruc-
ture, where the release artifacts are installed. The tasks, described below, are
applied on project level.

• Release Planning
The CM provides release planning capabilities with definition of release con-
tent by assigning change requests (issues) to specific target releases. Multiple
target releases are processable in parallel, e.g. a major release for long term
development, a minor release for midterm development and short terminated
bug fix releases. GitLab represents target releases as release branches. Target

42

Major Project 2020

releases contain all required information, like a name, description and further
documentation. The CM design covers planning on content level, based on
decisions by the change control board (CCB), not considering business case
planning regarding resources or budget. Project planning on business case
level is provided by the controlling department of Yeskia Inc.

• Progress Monitoring
GitLab provides the possibility to consider the progress of each assigned

change request (issue). The progress is realized using a life cycle on issues
as shown in figure 17.

Figure 17: Issue development life cycle

1. open
A new created issue, not assigned for implementing

2. todo
Issue approved and assigned by the CCB, ready to implement

3. doing
Issue in implementation phase

4. closed
Issue closed by developer, ready to integrate into assigned release mile-
stone

The life cycle is fully adaptable to custom requirements, e.g. extending with
states for reviewing or testing stages.

• Release Approval Process
For each potential release candidate, a linked milestone is created. Milestones
represent release packages for the subsequent release validation process. In
case of failing validation, a new successor milestone is created as base for the
next release candidate loop iteration. The milestone passing the validation
process represents the final content for the release freeze, published as delivery
package.

43

Major Project 2020

• Release History Tracking
All published releases are stored within the release database. GitLab provides
views, listing all closed releases including information. Further, the database
archives all artifacts for each release, extractable for roll-back installation,
recovering prior states of the facilities. Release content comparison supports
effective investigation of negative impacts related to release deployment.

Ticket System The ticket system is integrated within the GitLab framework
as core functionality. Issues are created as tickets, representing change requests
implementing a suitable life cycle as described in chapter 4.1.3. Issues are created
by different actors due to various reasons:

• Development feature requests

• Development bugs

• Production feature requests

• Production malfunction notifications

Submitted tickets act as initial starting point for the release planning, described in
chapter 4.1.3. Hence, the ticket system is closely linked to the release management.

Version Control Each defined project is connected to an individual git reposi-
tory as backend interface to the version control system. The repository stores any
kind of artifact related data (e.g. source code, application parameters, technical
specifications, integration development environment (IDE) solutions). Any modi-
fication of data inside repositories for development purpose is linked to referenced
issues. Transparency and traceability of code modifications is fully ensured. Version
control supports effective investigation by providing history based difference com-
parison. Parallel check-out combined with merging check-in enables the required
collaborative development workflow.

4.2. Detection and logging of unauthorized artifact changes

The following sections are related to the mitigation concept MIT3 - Detection and
logging of unauthorized artifact changes, described in chapter 3.1.2.

4.2.1. Tool Research

As main programming language, JavaScript is chosen, executing the solution inside
the node.js [36] runtime. JavaScript is widely used, simple to use, dynamically typed
scripting language, offering comprehensive library support (e.g. GitLab, OPC-UA,
Logging, ...). Availability of runtime implementations for various OS environments,

44

Major Project 2020

provides flexible portability. The adapter concept supports seamless adaption of
libraries, written in different programming languages. Hence, available communi-
cation adapter implementations could easily be integrated within the solution (e.g.
native C/C++ libraries). The GitLab environment is already implemented and in-
stalled with MIT4 & MIT6, providing a suitable and available solution for persistent
history data tracking and mail notification service.

4.2.2. Architecture Description

The following chapter describes the overall software architecture design with scope
on integration level. Figure 18 depicts the software component structure, used as
template for the implementation phase.

Figure 18: MIT3 - Architecture Design

Each software component is described regarding its architecture, API and func-
tional behavior.

1. Overall Architecture
The architecture of the mitigation is split into two sections, the main ap-
plication and the GitLab service. The integration of all implemented SW
components within the main application is structured in separate files to en-

45

Major Project 2020

able a modular approach for good maintainability and transparency. Executed
with node.js runtime implementation, the connection to the GitLab service is
realized using its provided HTTPS based API.

2. Surveillance Deamon
The surveillance daemon represents the main component, controlling the pro-
cess. The scheduler is realized using JavaScripts native method setInterval().
No additional components are required to implement the required functional-
ity. The global service configuration is realized with a JSON [37] formatted
persistent file, parsed at initialization phase of this component. All relevant
configuration parameters are passed to sub-components during initialization.
The functions of this component are called internally only, hence no external
API is published. The execution context of the service is solely implemented
within this component.

3. Comm Adapter
The communication adapter represents the interconnection component be-
tween the surveillance service and its connected control & monitoring com-
ponents of the production facility. It implements the specific communication
protocols for acquiring the desired information from the HW components. Due
to varying requirements for different protocol implementations, usage of suit-
able programming languages is supported. The API provides functions for
requesting checksum values, representing the binary content of the controller
artifacts. If not directly provided by the individual control & monitoring
component interface, the comm adapter requires further implementation for
calculating the desired checksum values.

4. Change Detection Management Service
After acquiring representing checksum values from the control & monitoring
component, it is passed to the change detection management service using
internal API calls. Therefore, the component publishes the required function
set as public interface. Persistent storage of the last known state table is
realized using a JSON formatted file.

5. GitLab
GitLab service is responsible for persistent history storage and export, as well
as for email notification of detected changes. The provided issue system is used
for both tasks. The interconnection to the GitLab service is realized calling
its provided HTTPS based API, using an available and open source adapter
library gitbeaker [38].

46

Major Project 2020

4.2.3. Functional Specification

At program initialization phase, the main routine of the application opens the global
configuration file and initializes all required sub-components passing the related
configuration parameters. The change detection service opens the file containing
the last known checksum values for each monitored HW component. Once the
system is successfully initialized, the surveillance daemon schedulers starts periodical
triggering the acquisition of the artifact representing checksum values. Each control
& monitoring component, internally represented with a unique component ID, is
monitored regarding changes of the artifact content checksum values. In case of a
detected value change, the change detection service updates the linked entry inside
the JSON formatted file. Further an issue creation process and mail notification is
initialized containing the following information:

• Title
Stating that an artifact content of HW component (ID and name) has been
changed

• Description
Old and new artifact checksum value for verification

4.3. Implementation of computer aided spare part replacement process

The following sections are related to the mitigation concept MIT7 - Implementation
of computer aided spare part replacement process, described in chapter 3.1.5.

4.3.1. Tool Research

As the main programming language, JavaScript is chosen for the frontend and the
backend implementation, analogous to MIT3 4.2.1.
The GitLab environment is already implemented and installed with MIT4 &

MIT6, providing a suitable and available solution for persistent history data tracking
and mail notification service.

4.3.2. Architecture Description

The following chapter describes the overall software architecture design with scope
on integration level. Figure 19 depicts the software component structure, used as
template for the implementation phase.

47

Major Project 2020

Figure 19: Spare part app simplified integration architecture

Each software component is described regarding its architecture, API and func-
tional behavior.

1. Overall Architecture
The architecture of the mitigation is split into two sections: the main appli-
cation (i.e. frontend & backend), and the GitLab service. The integration
of all implemented SW components within the main application is structured
in separate files to enable a modular approach for good maintainability and
transparency. The frontend is responsible for providing a guided user inter-
face to the maintenance technician, while the backend is executed within the
node.js runtime, and the connection to the GitLab service is realized using
its provided HTTPS based API. Due to the web based approach, the service
is accessible over internet protocol (IP) network infrastructure, using various
device types (e.g. Laptop, Smartphone, ...).

48

Major Project 2020

2. Frontend
The frontend implementation is split into two software components:

a) index.html
Implements the form for the replacement process, validating and submit-
ting user input data to the backend.

b) list.html
Provides a table-based view of the complete BOM inventory, showing the
current HW status of the facility.

3. Backend
After validating and accepting the submitted user input data from the fron-
tend, the backend updates the relevant spare part record in the current inven-
tory database and finally creates a GitLab issue.

4. Current Inventory Database
The database, representing the current status of all available HW components
of the facility, is implemented within the file current_inventory.json. The
implementation is prepared for future migration to large scale SQL database
solutions.

5. User Database
All users defined for accessing the service are listed within the file users.json.
Besides the user name, the user ID of the GitLab service is defined here en-
abling automatic creation of GitLab issues.

6. GitLab
GitLab service is responsible for persistent history storage and export, as well
as for email notification of detected changes. The provided issue system is used
for both tasks. The interconnection to the GitLab service is realized calling
its provided HTTPS based API, using an available and open source adapter
library gitbeaker [38] inside backend.js.

4.3.3. Functional Specification

At program initialization phase, the backend opens a global configuration file and
initializes all required sub-components passing the related configuration parameters.
Once the system is successfully initialized, it listens for incoming HTTPS connec-
tions on TCP port 30443 in order to accept user input data from the frontend. In
case of an incoming submit, the backend updates the relevant record inside the cur-
rent inventory database. Further an issue creation process and mail notification is
initialized containing the following information:

49

Major Project 2020

• Title
Stating that spare part (BMK) has been replaced

• Description
Summarizes the input data from the user, combined with the record data of
the replaced part.

The frontend form for replacement submission includes the following listed ele-
ments:

1. Header
The header of the website contains the company name as well as a short
description of the purpose of this site.

2. Link to BOM inventory list view
A link, redirecting to the webview containing the list displaying the current
inventory database content.

3. User (mandatory)
Dropdown containing all available user accounts for selecting the technician
processing the replacement process.

4. Material equipment identifier (BOM) (mandatory)
Dropdown, filled with all available HW components of the facility, able to select
for the replacement process. The elements are displayed with the unique BOM
and the component name.

5. Serial number - removed part (if applicable)
If applicable, the serial number of the replaced part

6. Serial number - installed part (if applicable)
If applicable, the serial number of the installed part

7. Revision status - removed part (if applicable)
If applicable, the revision status of the replaced part

8. Revision status - installed part (if applicable)
If applicable, the revision status of the installed part

9. Date of replacement (mandatory)
HTML5 datepicker element for selection of the replacement date. This date
could differ from the current date.

10. Task comment
A comment filled by the technician, explaining the purpose of the replacement
or other additional notes.

50

Major Project 2020

11. Submit button
The button to submit the filled form to the backend service for validation and
processing.

The following enumeration describes the functional behavior of the application:

1. Frontend form index.html initialization
Accessing the index.html start page of the spare part replacement service,
the frontend automatically fills the field date of replacement with the cur-
rent date. The user is able to change the date of replacement value, as the
replacement could be processed already days before the submission.

2. User selection
As the dropdown list only contains all users, defined within the user database
file, the selection is fail-safe.

3. HW component selection
The dropdown list is prefilled with all available HW components of the facility.
After selecting one item, the frontend fills further fields (Serial number -
removed part, Revision status - removed part) with available informa-
tion regarding the component. The user verifies the suggested values against
the real numbers of the replaced part. In case of differences, the values can be
overwritten, which leads to a additional notice within the created GitLab issue
description. This scenario is necessary in case of non-consistent replacement
history (e.g. replacements without submission).

4. Submit replacement documentation
After filling all desired fields, the process is finished by pressing the submit
button, located at the bottom of the page. The data is passed to the backend
service for validation and further processing.

Processing the passed data, the backend service is performing the following vali-
dation checks:

• Replacement date
The date representing the replacement timestamp shall not be in the future.

• Serial number available
In case a serial number is available for the selected component within the
current inventory database, the field shall be treated as mandatory.

• Serial number consistent
Compare the passed value for the replaced part with the available value within
the current inventory database. In case of differences, the backend adds an
additional notice within the created GitLab issue description for transparency.

51

Major Project 2020

• Revision status available
In case a revision status is available for the selected component within the
current inventory database, the field shall be treated as mandatory.

• Revision status consistent
Compare the passed value for the replaced part with the available value within
the current inventory database. In case of differences, the backend adds an
additional notice within the created GitLab issue description for transparency.

5. Implementation Phase

This chapter describes the implementation of the mitigations addressing the high-
est priorities, based on the design phase. The implementation phase is split into
two release candidates, where release candidate 1 is concerned with MIT4 & MIT6
- comprehensive development process, whereas release candidate 2 covers MIT3 -
detection and logging of unauthorized artifact changes and MIT7 - implementation
of computer aided spare part replacement process. This section primarily focuses
on the implementation tasks of the server framework, rather than its usage (user
manual). Refer to the appended training course material for user hands-on usage
description.

5.1. Release Candidate 1 (RC1)

This chapter covers the implementation of RC1, realizing the mitigation MIT4 &
MIT6 - comprehensive development process.

5.1.1. Implementation (RC1)

The necessary steps for the installation, implementation and configuration are out-
lined in the subsequent section, structured by its comprising SW components.

Installation of Ubuntu 20.04 LTS in Oracle VirtualBox
A Linux Ubuntu 20.04 LTS [34] operating system is installed in a Oracle Virtu-

alBox [39] environment to serve as the central server infrastructure for further tool
integration. The following settings have to be adjusted for the installation, in order
to ensure adequate system performance:

• Set storage disc space allocation to 30GB (dynamically allocated)

• Set processor count to 2

• Set base memory to 5120MB

• Enable 3D acceleration in display settings

52

Major Project 2020

• Ensure Network Adapter 1 is set to NAT (for complete network structure
description, refer to Chapter 5.1.1)

Creation of a certificate chain with self-signed certificate authority
(CA) SSL certificates are required to provide authenticated and secured connections
to the services of the CM server infrastructure. Despite the very limited network
access of the education facility within the laboratory, securing all network traffic
prepares the server installation for later migration to extended IT-infrastructures,
utilizing unsecured network areas as well. A hierarchical certificate structure, ac-
cording to IETF X.509 [40] enables the verification of all further created certificates
by only installing the self-signed root CA public certificate on client machines. The
OpenSSL [41] framework is used for generation. In a real world scenario, this emula-
tion would be replaced by using an already existing public key infrastructure (PKI)
[42] of the companies IT-infrastructure. The created CA structure is illustrated in
figure 20, the required installation steps are listed subsequently.

53

Major Project 2020

Figure 20: Root CA certificate chain54

Major Project 2020

As first step, a root CA and its private key are created using the following com-
mands:

1. openssl genrsa -aes256 -out ca-key.pem 4096
The private key has a key length of 4096 bit. As the root key represents the
secret with the highest criticality regarding confidentiality, it is additionally
encrypted with AES256 algorithm to avoid unauthorized access in case of
leakage.

2. openssl req -x509 -new -nodes -extensions v3_ca -key ca-key.pem -days
3650 -out ca-root.pem -sha512
The public root CA certificate is self-signed with the root CA private key.

The public root CA certificate is installed on all relevant client machines (cert
store of web browser, OS and git framework installation) to enable verification of
all certificates, issued by the root CA. The issued server certificate with its private
key is created and signed using the following steps:

1. create server certificate configuration file

Listing 1: server.cfg
1 [req]
2 distinguished_name = req_distinguished_name
3 req_extensions = v3_req
4 prompt = no
5 [req_distinguished_name]
6 C = IS
7 ST = state
8 L = Reykjav
9 O = Yeskia Inc.

10 CN = yeskia -hs.com
11 [v3_req]
12 keyUsage = keyEncipherment , dataEncipherment
13 extendedKeyUsage = serverAuth
14 subjectAltName = @alt_names
15 [alt_names]
16 DNS.1 = yeskia -hs.com
17 DNS.2 = www.yeskia -hs.com
18 DNS.3 = mail.yeskia -hs.com
19 DNS.4 = www.mail.yeskia -hs.com

2. openssl genrsa -out server-key.pem 4096
The private key has a key length of 4096 bit. As this key is implicitly used

55

Major Project 2020

by webserver and mail services, and certificate revocation and replacement is
achievable with little effort in case of leakage, the key is not encrypted.

3. openssl req -new -out server.csr -key server-key.pem -config server.cfg
A certificate signing request (CSR) is generated, including all relevant infor-
mation.

4. openssl x509 -req -in server.csr -CA ca-root.pem -CAkey ca-key.pem
-CAcreateserial -out server.pem -days 3650 -sha256
Finally, the CSR is signed by the root CA, using its secret private key. After
completion of this step, the created server certificate is valid until revocation
or expiration.

Table 6 summarize all resulting files of the CA generation process.

Table 6: CA - generated files
Filename Description
ca-key.pem private key of the root CA (PEM format)
server.cfg configuration file for server CSR generation
server-key.pem private key of the server certificate (PEM format)
server.csr server CSR (PEM format)
server.pem server certificate incl. public key (PEM format)

Install docker
Docker [35] is a platform enabling OS level virtualization to deliver software in

so-called containers. Besides addressing security related topics, Docker provides
the option for easy installation of preconfigured solutions. Additionally, Docker
Compose extension [43] is installed to support defining and running containers easily
configurable utilizing YAML files.

Install and configure GitLab using docker
On top of the Docker runtime environment, GitLab Community Edition [26] is

installed as container using Docker Compose with a YAML configuration file printed
in listing 2.

Listing 2: gitlab_compose.yaml
1 web :
2 image : ’ g i t l a b / g i t l ab−ce : l a t e s t ’
3 r e s t a r t : always
4 hostname : ’ yesk ia−hs . com ’
5 environment :
6 GITLAB_OMNIBUS_CONFIG: |
7 exte rna l_ur l ’ https : // yesk ia−hs . com ’
8 l e t s e n c r yp t [’ enable ’] = f a l s e
9 g i t l a b_ r a i l s [’ g it lab_email_enabled ’] = true

56

Major Project 2020

10 g i t l a b_ r a i l s [’ git lab_email_from ’] = ’ cm@yeskia−hs . com ’
11 g i t l a b_ r a i l s [’ gitlab_email_display_name ’] = ’ Conf igurat ion

Management ’
12 g i t l a b_ r a i l s [’ g it lab_email_reply_to ’] = ’ noreply@yeskia−hs . com ’
13 g i t l a b_ r a i l s [’ g i t l ab_emai l_subjec t_su f f i x ’] = ’ ’
14 g i t l a b_ r a i l s [’ smtp_enable ’] = true
15 g i t l a b_ r a i l s [’ smtp_address ’] = " mail . yesk ia−hs . com"
16 g i t l a b_ r a i l s [’ smtp_port ’] = 587
17 g i t l a b_ r a i l s [’ smtp_user_name ’] = " cm@yeskia−hs . com"
18 g i t l a b_ r a i l s [’ smtp_password ’] = "Passw0rd ! "
19 g i t l a b_ r a i l s [’ smtp_domain ’] = " yesk ia−hs . com"
20 g i t l a b_ r a i l s [’ smtp_authentication ’] = " l o g i n "
21 g i t l a b_ r a i l s [’ smtp_enable_starttls_auto ’] = true
22 g i t l a b_ r a i l s [’ smtp_openssl_verify_mode ’] = ’ peer ’
23 g i t l a b_ r a i l s [’ smtp_ca_file ’] = ’/ e t c / g i t l a b / s s l /ca−root . crt ’
24 r eg i s t ry_ng inx [’ s s l _ c e r t i f i c a t e ’] = "/ e tc / g i t l a b / s s l / yesk ia−hs .

com . c r t "
25 r eg i s t ry_ng inx [’ s s l_c e r t i f i c a t e_key ’] = "/ e t c / g i t l a b / s s l / yesk ia

−hs . com . key "
26 por t s :
27 − ’ 443 : 443 ’
28 − ’ 22 : 22 ’
29 volumes :
30 − ’/ s rv / g i t l a b / c on f i g : / e t c / g i t l ab ’
31 − ’/ s rv / g i t l a b / l o g s : / var / log / g i t l ab ’
32 − ’/ s rv / g i t l a b /data : / var /opt/ g i t l ab ’
33 extra_hosts :
34 − " mail . yesk ia−hs . com : 172 . 17 . 0 . 1 "

The installation is carried out aligned to the extensive documentation available on
the GitLab website [44]. External access to the GitLab server is secured using the
generated server certificate to provide the identification of the server identity and
encryption of all traffic, implementing transport layer security (TLS). For send-
ing notification emails, the GitLab configuration is extended with custom SMTP
settings. Web access and connections to the SMTP server is limited to secured
communication channels (TLS) only.

Install and configure iRedMail mail server

iRedMail [45], an open source mail server, is installed to simulate a real company
email infrastructure. Authentication and traffic encryption is enabled with instal-
lation of the server certificate within the NGINX webserver [46] and the provided
SMTP/internet message access protocol (IMAP) server access. Relevant iRedMail
users are created to grant access to the related mailboxes via the webmailer frontend.

57

Major Project 2020

Network infrastructure setup

As outlined in figure 21, the network structure is split into three separated, isolated
IP based subnets:

1. Host-PC-Festo
Windows host PC for development purpose and production control, addition-
ally acting as host machine for the virtual CM server infrastructure.

2. Guest-OS-Ubuntu
Virtual sandbox environment for the complete virtual CM server infrastruc-
ture, hosting all CM relevant services.

3. Docker GitLab Container
Container based virtual sandbox, hosting the GitLab environment including
its required database instances.

As the virtual server represents the emulated enterprise IT-infrastructure, the
fully qualified domain names (FQDNs) yeskia-hs.com and mail.yeskia-hs.com
are configured as primary domain names. The subnets are connected via network ad-
dress translation (NAT), forwarding requests on dedicated ports towards registered
destination IP interfaces. The NAT implementation provides security by rejecting
any other requests besides the desired service endpoints. Extended configuration of
the OS hosts files supports access to the subnets using FQDN resolution. Depend-
ing on the source domain, the domain name server (DNS) directs to the appropriate
destination subnet where the target server is located.

Figure 21: Network Structure

58

Major Project 2020

Due to lack of an enterprise DNS server within this project, the FQDN domain
names are resolved locally by the respective OS name service, linking its hosts con-
figuration file. The following routes describe the communication paths regarding
their associated use cases:

• Ext.-Dev.-PC ⇒ Host-PC-Festo
Access attempts from external located PCs are routed through the Festo host
PC. Hence the external clients establish IP connections with the Festo PC IP
address as destination. Once connected to the Festo PC, the routing mech-
anism of Windows is treating them analogous to local attempts for further
processing.

• Host-PC-Festo ⇒ Guest-OS-Ubuntu
Oracle VirtualBox provides port forwarding rules applied to NAT configured
virtual interfaces. Searching for a listening IP port within the host envi-
ronment, the NAT service retargets the requests to the Guest-OS in case of
matching destination ports. Further processing is handled inside the virtual
machine (VM).

• Guest-OS-Ubuntu ⇒ iRedMail server
For incoming connection attempts, the Linux forwarding table distinguishes
between access to the iRedMail webserver and the GitLab servers inside the
Docker container. The selection is based on the destination port of the con-
nection attempt:

– 443, 22: forwarded towards the GitLab Docker container

– 10443: routed to the local available iRedMail NGINX webserver instance

• Guest-OS-Ubuntu ⇒ Docker Container (GitLab)
A second stage NAT layer is responsible for finally routing requests on port 443
and 22 into the GitLab Docker container subnet, reaching the desired services.

• Docker container (GitLab) ⇒ iRedMail server
To provide container internal services the possibility to establish links to ser-
vices running on guest OS level, backtrace routes are registered within the
Docker environment. Any access to the domain name mail.yeskia-hs.com
from services inside the container are forwarded to the guest OS subnet (iRed-
Mail server access from GitLab).

Project initialization setup

Based upon the described server infrastructure installation, each project requires
an initial setup for further usage. The following list outlines the project creation
and configuration steps:

59

Major Project 2020

1. User management - GitLab
As first step, user accounts for all relevant users are created within the GitLab
user management system using the GitLab webadmin frontend. In addition
to the user name, account contains additional information regarding the user.

2. Group definition - GitLab
GitLab defines working groups, which contain references to created projects.
Access to referenced projects is granted for member users of the group.

3. Project creation - GitLab
Create a new project with the ability for importing an already existing git
repository or to automatically generate a new, empty repository, directly linked
to the project. Projects are assigned to defined groups.

4. Project user role assignment - GitLab
The granted access level and correlating permissions are defined by assigning
predefined roles to user accounts, individual configurable for each project.

5. User management - iRedMail
For each user, a dedicated mailbox instance with a linked email address is
created using the iRedMail administration web frontend.

5.1.2. Integration Test (RC1)

After successful integration of all required software components within the CM server
infrastructure environment, the integration test procedure is executed according to
the test specification CM_integration_test_report in appendix C. The test report
documents the result of the test procedure, each test step is listed with detailed in-
formation regarding execution and individual result. The test documentation covers
all required information for test reproducibility. Due to the seamless integration of
the GitLab docker environment and standard interfaces toward the mail server, the
test showed no irregularities.
The test report documentation is structured as described below:

1. Report header

• Report ID - unique ID of the document

• Date - date of test execution

• Tester - person or group conducting the test execution

• Result - overall test result

• Object under test (OUT) - object to be examined

• Test environment - test infrastructure and installation

60

Major Project 2020

• Test result summary - result summary, condensed for major test steps

2. Test Steps

• Test step headline - unique ID and name of the major test step

• Minor test steps - ID, instruction and excepted result for each minor test
step

• minor test step result - result for each minor test step

5.2. Release Candidate 2 (RC2)

This chapter covers the implementation of RC2, realizing the mitigation MIT3 -
detection and logging of unauthorized artifact changes and MIT7 - implementation
of computer aided spare part replacement process.

5.2.1. MIT 3 - Implementation (RC2)

The application code is written as outlined in the design architecture schematic.
Functionality is fully implemented with the resulting solution. An online available
GitLab cloud account is used for stubbed implementation during the development
phase to minimize the time demand requiring the laboratory facility infrastructure.
As communication with the real OPC-UA server is not provided in this environment,
the different use cases of request replies are emulated within a stubbed communica-
tion adapter SW component. The service is executed within a node.js runtime envi-
ronment, automatically started at OS boot time, infinitely monitoring for integrity
checksum changes as background daemon. All required configuration parameters
are defined inside the global configuration file config.json listed in figure 22.

Figure 22: Configuration file - content

• GITLAB_API_HOST
The URL of the GitLab server

• GITLAB_API_TOKEN
A unique token, created by GitLab, granting access to the repository

61

Major Project 2020

• GITLAB_PROJECT_ID
The ID of the gitlab project

• GITLAB_USER_ID
The GitLab user account to access the repository and perform tasks within
the ticket system

• OPC_ENDPOINT
The URL of the monitored device within the facility infrastructure

• SURVEILLANCE_ITERATION_INTERVAL_TIME
Periodic time span in milliseconds between monitoring loops

The scheduler, running withing the main thread loop of the surveillance appli-
cation, periodically calls the function iteration(). A complete monitoring cycle
is executed within this function call. As listed in figure 23 the main iteration loop
executes the following steps:

1. getChecksumFromDevice()
The current available checksum is requested using the proper communication
adapter for the desired device. Error handling in case of communication fail-
ures are handled here.

2. detectChange(checksumOfApp, checksumFromFile)
Pass the tuple, including the acquired checksum and the expected value from
the persistent file last_known_state.json, calling the function detectChange
for further processing.

62

Major Project 2020

Figure 23: surveillance_deamon.js - monitoring iteration loop function

The communication adapter exports its public function getChecksumFromDevice,
listed in figure 24. Calling this function executes the subsequent steps.

1. client.connect(endpointUrl)
Try to establish a TCP connection to the OPC-UA server of the desired HW
device.

2. client.createSession()
After successful connection, create a session for further data exchange on OPC-
UA protocol layer.

3. session.read(...)
Request the required checksum values, addressing the OPC-UA server with
proper data.

Further code within the function transforms the checksum data into the harmonized
format for passing back to the caller instance. Error handling for identification of
communication failures is implemented here as well.

63

Major Project 2020

Figure 24: comm_adapter.js - get checksum from device

After checksum acquisition, the function detectChange(checksumOfApp, checksumFromFile)
compares the passed checksum values for difference. In case of detected changes
within the checksum values, a GitLab issue is created via the https based API, au-
tomatically triggering a notification email to the issue assigned recipient. Finally, the
file last_known_state.json is updated with the new checksum value to suppress
repeatedly notifications (false positives). Figure 25 lists the code of the described
functionality.

64

Major Project 2020

Figure 25: detection_service.js - detect checksum changes

The complete inline commented source code is available within the project sub-
mission folder.

5.2.2. MIT 3 - Integration Test (RC2)

The implemented SW components are integrated as application, running within
the development environment. To emulate the missing Yeskia Inc. GitLab server
infrastructure, a freely available online could account is used. The communication
adapter is temporarily replaced with a stub implementation, simulating the desired
use cases of real communication scenarios. The integration test is processed as
described in the test report CM_integration_test_report_rc2 including the test
results, available within appendix E. The structure of the test report is analogous
to chapter 5.1.2.

5.2.3. MIT 7 - Implementation (RC2)

The application code is written as outlined in the design architecture schematic.
Functionality is fully implemented with the resulting solution. An online available
GitLab cloud account is used for stubbed implementation during the development
phase to minimize the time demand requiring the laboratory facility infrastruc-
ture. The backend is executed within a node.js runtime environment, automatically
started at OS boot time, serving the HTML files and listening for incoming user

65

Major Project 2020

input data. All required configuration parameters are defined inside the global con-
figuration file config.json listed in figure 26.

Figure 26: Configuration file - content

• GITLAB_API_HOST
The URL of the GitLab server

• GITLAB_API_TOKEN
A unique token, created by GitLab, granting access to the repository

• GITLAB_PROJECT_ID
The ID of the gitlab project

Frontend
In order to provide a modern, state-of-the-art user interface, the well known Boot-

strap framework [47] is used to style web based content. The latest version of the
hypertext markup language (HTML) markup language (HTML5) is used for future
proof design.

Backend
The backend server is configured using HTTPS, providing secure and encrypted

communication between the user machine and the webserver, as well as between the
frontend implementation and the backend API. As listed in figure 27 the backend
server is configured using the Yeskia Inc. TLS server certificate.

Figure 27: Backend SSL setup

Figure 28 shows an extract of the submit listener implementation, including logic
for finding the entity to update and serial number validation.

66

Major Project 2020

Figure 28: Backend submit listener

Figure 29 shows the current inventory database update routine. The inventory
record is updated with the following data, submitted by the maintenance technician:

• Date of last replacement

• Serial number of installed part

• Revision status of installed part

Finally the file is written back to the hard disk for persistent storage.

Figure 29: Backend update inventory routine

67

Major Project 2020

The complete inline commented source code is available within the project sub-
mission folder.

5.2.4. MIT 7 - Integration Test (RC2)

The implemented SW components are integrated as application, running within
the development environment. To emulate the missing Yeskia Inc. GitLab server
infrastructure, a freely available online could account is used. The integration test
is processed as described in the test report CM_integration_test_report_rc2.pdf
including the test results, available within appendix E.

6. Validation Phase

This section describes the validation steps of all implemented release candidates.

6.1. System Test Validation - RC1

Due to its inherent hardware autonomy, the performance of RC1 can be validated
using the integration stage test and no further dedicated system integration test is
necessary. After successful integration test, the framework can be installed at the
customer facility for the subsequent customer integration test.

6.2. Customer Integration Test - RC1

The customer integration tests are conducted at the customer site on the production
facility. Due to high test costs associated with partial or full production downtime
during testing, a successful integration test and system integration test are a pre-
requisite. This ensures minimizing possible adverse effects during installation on the
customer infrastructure.
The test is conducted analogous to the integration test phase, on the Festo-PC

infrastructure.
Test iteration 1
As indicated in CM_integration_test_report iteration 1 in appendix D, the

test execution failed at step 1 - Login to GitLab web frontend. The investigation
discovered a duplicate use of the intended port 443 for the web server by another
service on the Festo-PC. As this is a customer infrastructure specific behavior, this
issue was not present in the previous integration test phases. An improved customer
infrastructure specification is recommended for future projects, in order to avoid
similar issues. This issue is solved by redirecting the initially specified port 443
to port 20443, which is available on the machine. A subsequent test iteration is
necessary to evaluate all test steps within the test specification.

68

Major Project 2020

Test iteration 2
Within CM_integration_test_report iteration 2 in appendix C, the test failed

again at later stage. In step 8 - Create new merge request and new branch, the
generated branch was not visible. This behavior is traced back to well-known issues
within the Microsoft Edge Browser, visualizing drop-down menu content. Firefox
Browser is installed to solve the issue.

Test iteration 3
The implementation is again tested in a final iteration 3 passing all test steps, as

listed in CM_integration_test_report iteration 3 in appendix C.

6.3. Customer Acceptance Test - RC1

The implementation is accepted by the customer after an extensive evaluation, which
is documented in an acceptance protocol and signed by both involved parties. This
stage is the conclusive step of the development of MIT4 & MIT6 and defines the
state of the implementation for a partial delivery.

6.4. System Test Validation - RC2

Binary integrity surveillance
The integrated and pretested binary integrity surveillance service, refer to test

report CM_integration_test_report_rc2 in appendix E, is installed within the
target representing system test environment. The emulating GitLab and communi-
cation adapter stubs are replaced with the productive variants. Additionally, to the
already executed tests during the development integration test phase, the communi-
cation adapter with real communication scenarios and the interface to the productive
GitLab server instance is the primary scope of this test stage. Due to extensive test-
ing on the development environment following the mentioned stubbing strategy, no
further issues occurred during the system test process. The procedure and results
are documented within the test report CM_system_integration_test_report_rc2
in appendix F.

Spare part replacement process
Analogous to the system test of MIT3 6.4, the release candidate is deployed to the

system test environment. The stubbed GitLab account is replaced with the produc-
tive server infrastructure. Due to extensive testing on the development environment
following the mentioned stubbing strategy, no further issues occurred during the sys-
tem test process. The procedure and results are documented within the test report
CM_system_integration_test_report_rc2 in appendix F.

69

Major Project 2020

6.5. Customer Integration Test - RC2

As the system test and the customer facility are equivalent in our scenario of the
virtual company Yeskia Inc., the customer integration test corresponds to already
processed system test, described in chapter 6.4. As consequence, the execution of
this identical test loop is skipped in this case.

6.6. Customer Acceptance Test - RC2

The implementation is accepted by the customer after an extensive evaluation, which
is documented in an acceptance protocol and signed by both involved parties. This
stage is the conclusive step of the development of MIT3 and MIT7 and defines the
state of the implementation for the final delivery.

7. Training

The project concludes with a training course for selected employees of Yeskia Inc.
The training covers usage, maintenance and administration of the developed CM
system. The goal of this course is to enable efficient usage regarding different use
cases.

7.1. Training Concept Development

The training concept is comprised as hands-on-training including practical live
demonstration. Training duration is set to 45 minutes, covering the following topics
in the outlined order:

1. Comprehensive Development Process (MIT4 & MIT6)

2. Detection of unauthorized artifact changes (MIT3)

3. Spare part replacement process (MIT7)

If applicable and beneficial, the training is carried out from the perspective of an
administrator, a maintainer and a developer. Fellow students pose as employees of
Yeskia Inc.

A teaching room, providing the following training facilities, is required:

• Projector

• Laptops

• Connection to the laboratory network

70

Major Project 2020

The training is delivered by an alternating presenter, supported by two train-
ing assistants guiding the trainees. The training material structure is aimed for
reapplication in the future.

7.2. Training Content

The training material content is gathered from the actual solutions. It is easily
comprehensible and does not require extensive prior knowledge of the used SW
components. It is mainly composed of screenshots taken from the developed CM
applications, including visually highlighted relevant areas.

The training course material is provided separately and not content of this report.

8. Outlook

Due to continuously rising complexity and connectivity of modern industrial in-
frastructures, the risks of production unavailability, non-conforming production and
safety or security incidents increases proportional. This trend indicates the high de-
mand concerning a suitable configuration management mitigating potential negative
impacts.
The analysis and concept phase, including the extensive risk assessment, covers a

wide range of potential mitigations. However, due to budget limitations, the design
and implementation focuses on the four most important mitigations, which are fully
realized and validated. The developed CM framework is prepared for deployment
within a productive environment for professional use, representing a successful com-
pletion of this project.

An effective real world implementation exceeds the scope of this student project.
Nevertheless, the process approach and the results of the analysis and concept phase
provide a solid foundation for further development.
The real world scenario focus of the major project, combined with the multidisci-

plinary approach, results in growth on both personal and professional level.

Finally, the project group would like to express deep gratitude towards our su-
pervisor Prof. Dr. rer. nat. Peter Richard and all fellow students for guidance and
support.

71

Major Project 2020

9. Abbreviations

AOI automatic optical inspection

API application programming interface

BOM bill of material

CA certificate authority

CCB change control board

CM configuration management

DB database

DIP dual in-line package

DNS domain name server

EBIT earnings before interest and taxes

FQDN fully qualified domain name

FW Firmware

HMI human machine interface

HTML hypertext markup language

HW hardware

IDE integration development environment

IMAP internet message access protocol

IP internet protocol

KRL KUKA robotic language

MES manufacturing execution system

NAT network address translation

NCP non conforming production

OS operating system

OS operating system

PKI public key infrastructure

PLC programmable logic controller

RFID radio frequency identification

ROI return on investment

RPC remote procedure call

SCADA supervisory control and data

SIL safety integrity level

72

Major Project 2020

SL security level

SMTP simple mail transfer protocol

SRS Software Requirements Specification

SSH secure shell

SVN subversion

SW software

TCP transmission control protocol

TLS transport layer security

UI user interface

UX user experience

VM virtual machine

73

Major Project 2020

10. References

[1] Git, Git, 20.11.2020. [Online]. Available: https://git-scm.com/.

[2] Bitbucket, Bitbucket | the git solution for professional teams, 17.12.2020. [On-
line]. Available: https://bitbucket.org/product/.

[3] ISO, Iso 31000:2018, 17.12.2020. [Online]. Available: https://www.iso.org/
standard/65694.html.

[4] IEEE, Ieee recommended practice for software requirements specifications,
1998. doi: 10.1109/IEEESTD.1998.88286. [Online]. Available: https://
ieeexplore.ieee.org/document/720574.

[5] H. Gall, “Functional safety iec 61508 / iec 61511 the impact to certification
and the user.,” in AICCSA, IEEE Computer Society, 2008, pp. 1027–1031,
isbn: 978-1-4244-1967-8. [Online]. Available: http://dblp.uni-trier.de/
db/conf/aiccsa/aiccsa2008.html#Gall08.

[6] IEC, Iec 62443, 17.12.2020. [Online]. Available: https://webstore.iec.ch/
publication/7029.

[7] ISO, Din en iso 27001 - information security management, Berlin, 7/2017.

[8] Festo Didactic SE, Cp factory - cp-f-asrs32, 6–2017.

[9] Festo Didactic SE, Cp factory - cp-f-rass-kuka, Festo Didactic SE, Ed., 2–2018.

[10] Festo Didactic SE, Mes4 manual, Festo Didactic SE, Ed., 11–2017.

[11] Siemens AG, Simatic - et200sp open controller cpu1515-sp, Siemens AG, Ed.,
5–2017.

[12] Siemens AG, Simatic - et200sp kommunikationsmodul io-link master: Geräte-
handbuch, Nürnberg, 11–2017.

[13] Siemens AG, Simatic hmi tp700 comfort, 27/11/2020. [Online]. Available:
https://support.industry.siemens.com/cs/products/6av2124-0gc01-
0ax0/simatic-hmi-tp700-comfort?pid=127118&mlfb=6AV2124-0GC01-
0AX0&mfn=ps&lc=en-WW.

[14] D-Link, D-link dap-1665 - user manual: Wireless ac1200 dual band access
point. [Online]. Available: ftp://ftp2.dlink.com/PRODUCTS/DAP- 1665/
REVA/DAP-1665_REVA_MANUAL_v1.10_EN.pdf.

[15] Festo AG & Co. KG, Fibre optic unit soe4-fo-l - operating instructions, Festo
AG & Co. KG, Ed., 10/12/2020.

74

https://git-scm.com/
https://bitbucket.org/product/
https://www.iso.org/standard/65694.html
https://www.iso.org/standard/65694.html
https://doi.org/10.1109/IEEESTD.1998.88286
https://ieeexplore.ieee.org/document/720574
https://ieeexplore.ieee.org/document/720574
http://dblp.uni-trier.de/db/conf/aiccsa/aiccsa2008.html#Gall08
http://dblp.uni-trier.de/db/conf/aiccsa/aiccsa2008.html#Gall08
https://webstore.iec.ch/publication/7029
https://webstore.iec.ch/publication/7029
https://support.industry.siemens.com/cs/products/6av2124-0gc01-0ax0/simatic-hmi-tp700-comfort?pid=127118&mlfb=6AV2124-0GC01-0AX0&mfn=ps&lc=en-WW
https://support.industry.siemens.com/cs/products/6av2124-0gc01-0ax0/simatic-hmi-tp700-comfort?pid=127118&mlfb=6AV2124-0GC01-0AX0&mfn=ps&lc=en-WW
https://support.industry.siemens.com/cs/products/6av2124-0gc01-0ax0/simatic-hmi-tp700-comfort?pid=127118&mlfb=6AV2124-0GC01-0AX0&mfn=ps&lc=en-WW
ftp://ftp2.dlink.com/PRODUCTS/DAP-1665/REVA/DAP-1665_REVA_MANUAL_v1.10_EN.pdf
ftp://ftp2.dlink.com/PRODUCTS/DAP-1665/REVA/DAP-1665_REVA_MANUAL_v1.10_EN.pdf

Major Project 2020

[16] MURR Elektronik, Mico 2.6 electronic circuit protection - installation man-
ual, 10/12/2020. [Online]. Available: https : / / shop . murrelektronik .
de / en / Electronics - in - the - Control - Cabinet / Intelligent - Power -
Distribution / Modules / MICO - electronic - circuit - protection - 2 -
CHANNELS-9000-41042-0100600.html.

[17] Hans Turck GmbH & Co. KG, Tben-s2-2rfid-4dxp - compact rfid interface,
11–2019.

[18] Festo AG & Co. KG, Gdcp-cmmp manual: Gdcp-cmmp-m3-hw-en, Esslingen,
10/12/2020. [Online]. Available: https://www.festo.com.cn/fox/net/
SupportPortal/MobileDetails.aspx?documentId=380123&q=CMMP- AS&
type=documentation.

[19] Festo AG & Co. KG, Compact vision system manual - sbo...-q: Manual compact
vision, 2016. [Online]. Available: https://www.festo.com/net/da_dk/
SupportPortal/default.aspx?cat=1995&tab=3&s=t#result.

[20] KUKA Deutschland GmbH, Kr c4 compact - specification: Version v10, Augs-
burg.

[21] Florian Wascher, Mes4 communication with mes4: Communication between
mes4 and plc, Festo AG & Co. KG, Ed.

[22] Jenkins, Jenkins, 18.11.2020. [Online]. Available: https://www.jenkins.io/.

[23] MIT, The mit license | open source initiative, 18.11.2020. [Online]. Available:
https://opensource.org/licenses/MIT.

[24] GoCD, Open source continuous delivery and release automation server | gocd,
7.07.2020. [Online]. Available: https://www.gocd.org/.

[25] Apache License, Apache license, version 2.0, 29.09.2020. [Online]. Available:
https://www.apache.org/licenses/LICENSE-2.0.

[26] GitLab, Gitlab.org / gitlab · gitlab, 18.11.2020. [Online]. Available: https:
//gitlab.com/gitlab-org/gitlab.

[27] Atlassian, Bamboo continuous integration and deployment build server, 18.11.2020.
[Online]. Available: https://www.atlassian.com/software/bamboo.

[28] Atlassian, Jira | issue & project tracking software | atlassian, 18.11.2020. [On-
line]. Available: https://www.atlassian.com/software/jira.

[29] Redmine, Redmine, 18.11.2020. [Online]. Available: https://www.redmine.
org/.

[30] GPLv2, Gnu general public license, version 2 - gnu-projekt - free software
foundation, 18.11.2020. [Online]. Available: http://www.gnu.org/licenses/
old-licenses/gpl-2.0.html.

75

https://shop.murrelektronik.de/en/Electronics-in-the-Control-Cabinet/Intelligent-Power-Distribution/Modules/MICO-electronic-circuit-protection-2-CHANNELS-9000-41042-0100600.html
https://shop.murrelektronik.de/en/Electronics-in-the-Control-Cabinet/Intelligent-Power-Distribution/Modules/MICO-electronic-circuit-protection-2-CHANNELS-9000-41042-0100600.html
https://shop.murrelektronik.de/en/Electronics-in-the-Control-Cabinet/Intelligent-Power-Distribution/Modules/MICO-electronic-circuit-protection-2-CHANNELS-9000-41042-0100600.html
https://shop.murrelektronik.de/en/Electronics-in-the-Control-Cabinet/Intelligent-Power-Distribution/Modules/MICO-electronic-circuit-protection-2-CHANNELS-9000-41042-0100600.html
https://www.festo.com.cn/fox/net/SupportPortal/MobileDetails.aspx?documentId=380123&q=CMMP-AS&type=documentation
https://www.festo.com.cn/fox/net/SupportPortal/MobileDetails.aspx?documentId=380123&q=CMMP-AS&type=documentation
https://www.festo.com.cn/fox/net/SupportPortal/MobileDetails.aspx?documentId=380123&q=CMMP-AS&type=documentation
https://www.festo.com/net/da_dk/SupportPortal/default.aspx?cat=1995&tab=3&s=t#result
https://www.festo.com/net/da_dk/SupportPortal/default.aspx?cat=1995&tab=3&s=t#result
https://www.jenkins.io/
https://opensource.org/licenses/MIT
https://www.gocd.org/
https://www.apache.org/licenses/LICENSE-2.0
https://gitlab.com/gitlab-org/gitlab
https://gitlab.com/gitlab-org/gitlab
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/jira
https://www.redmine.org/
https://www.redmine.org/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Major Project 2020

[31] Apache, Apache subversion, 20.11.2020. [Online]. Available: https : / /
subversion.apache.org/.

[32] Encyclopedia Britannica, Linus torvalds | finnish computer scientist, 20.11.2020.
[Online]. Available: https : / / www . britannica . com / biography / Linus -
Torvalds.

[33] GitLab, Gitlab integration architecture, 23.11.2020.

[34] Canonical, Focalfossa/releasenotes - ubuntu wiki, 23.11.2020. [Online]. Avail-
able: https : / / wiki . ubuntu . com / FocalFossa / ReleaseNotes ? _ga = 2 .
93303573.907068542.1606144533-95822307.1589614078.

[35] Docker Documentation, Docker overview, 19.11.2020. [Online]. Available:
https://docs.docker.com/get-started/overview/.

[36] Node.js, Node.js, 11.12.2020. [Online]. Available: https://nodejs.org/en/.

[37] json, Json, 5.12.2020. [Online]. Available: https://www.json.org/json-
de.html.

[38] gitbeaker, Jdalrymple/gitbeaker, 11.12.2020. [Online]. Available: https : / /
github.com/jdalrymple/gitbeaker.

[39] Oracle, Oracle vm virtualbox, 28/11/2020. [Online]. Available: https://www.
virtualbox.org/.

[40] Tools.ietf.org, Rfcmarkup Version 1.129d On, Rfc 5280 - internet x.509 pub-
lic key infrastructure certificate and certificate revocation list (crl) profile,
22.11.2020. [Online]. Available: https://tools.ietf.org/html/rfc5280.

[41] OpenSSL Foundation, Inc., /index.html, 30.11.2020. [Online]. Available: https:
//www.openssl.org/.

[42] BSI, Public key infrastrukturen - public key infrastrukturen (pkien), 28/11/2020.
[Online]. Available: https://www.bsi.bund.de/DE/Themen/DigitaleGesellschaft/
ElektronischeIdentitaeten / sicherPKI / sicherheitsmechanismenPKI .
html.

[43] Docker Compose, Overview of docker compose, 26.11.2020. [Online]. Available:
https://docs.docker.com/compose/.

[44] GitLab Docker, Gitlab docker images | gitlab, 30.11.2020. [Online]. Available:
https://docs.gitlab.com/omnibus/docker/.

[45] iRedMail, Iredmail - free, open source mail server solution, 8.05.2020. [Online].
Available: https://www.iredmail.org/.

[46] NGINX, Nginx | high performance load balancer, web server, & reverse proxy,
14.10.2020. [Online]. Available: https://www.nginx.com/.

[47] Twitter, Bootstrap, 16.12.2020. [Online]. Available: https://getbootstrap.
com/.

76

https://subversion.apache.org/
https://subversion.apache.org/
https://www.britannica.com/biography/Linus-Torvalds
https://www.britannica.com/biography/Linus-Torvalds
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes?_ga=2.93303573.907068542.1606144533-95822307.1589614078
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes?_ga=2.93303573.907068542.1606144533-95822307.1589614078
https://docs.docker.com/get-started/overview/
https://nodejs.org/en/
https://www.json.org/json-de.html
https://www.json.org/json-de.html
https://github.com/jdalrymple/gitbeaker
https://github.com/jdalrymple/gitbeaker
https://www.virtualbox.org/
https://www.virtualbox.org/
https://tools.ietf.org/html/rfc5280
https://www.openssl.org/
https://www.openssl.org/
https://www.bsi.bund.de/DE/Themen/DigitaleGesellschaft/ElektronischeIdentitaeten/sicherPKI/sicherheitsmechanismenPKI.html
https://www.bsi.bund.de/DE/Themen/DigitaleGesellschaft/ElektronischeIdentitaeten/sicherPKI/sicherheitsmechanismenPKI.html
https://www.bsi.bund.de/DE/Themen/DigitaleGesellschaft/ElektronischeIdentitaeten/sicherPKI/sicherheitsmechanismenPKI.html
https://docs.docker.com/compose/
https://docs.gitlab.com/omnibus/docker/
https://www.iredmail.org/
https://www.nginx.com/
https://getbootstrap.com/
https://getbootstrap.com/

Major Project 2020

A. Appendix: Project Scenario

77

Major Project 2020

Master Industrial Security
University of Applied Sciences Augsburg

Application Scenario

Table 1: Student authors
Student Student ID
Alexander Holzmann 2081881
Markus Kamm 2060929
Michael Wager 2081894

Major Project 2020

1 Introduction

Yeskia Inc. constitutes a multinational enterprise in the field of telecommunica-
tions and a manufacturer of premium smartphone devices. With over 20 years of
experience, the company managed to become one of the market leaders by utilising
state-of-the-art technologies combined with low-cost production in Asia. Despite
the great success story, Yeskia Inc. recently experienced an increasing adverse im-
pact on production outcomes and revenues. An initial investigation, initiated by
the management board, revealed that those incidents can be traced back to missing
configuration management concerning the production domain. Past critical events
like unintended machinery downtime, quality degradation of the final products and
safety related incidents urge the board to react. Growing connectivity of the enter-
prise infrastructure poses additional challenges regarding cyber security. In order
to resolve those issues and prevent future incidents, the board decided to task an
external consulting firm with the development and implementation of an appropri-
ate configuration management. The measures also include the establishment of a
training course for Yeskia Inc.’s employees.

2 Company fact sheet

• Company: Yeskia Inc.

• Company Headquarters: Island

• Business sectors: broadband communication infrastructure, smart home IoT
devices, premium smartphone devices

• Yearly overall revenue: 24,700,000,000 EUR

• Relevant sector for project assignment: production of smartphone devices

• Production: 10 production lines distributed across 3 sites located in China

• Operation: 24/7 - 365 days per year

• Product name: A-Phone

• Yearly revenue: 8,300,000,000 EUR

• Selling price: 899 EUR per device

• Manufacturing material costs: 249 EUR per device

• Units produced: 9,232,480 per year

• Basic production costs: 50,000,000 EUR per line per year (labour, production
infrastructure)

1

Major Project 2020

B. Appendix: System and Software Requirements
Specification

80

Major Project 2020

Master Industrial Security
University of Applied Sciences Augsburg

System and Software
Requirements Specification

Table 1: Student authors
Student Student ID
Alexander Holzmann 2081881
Markus Kamm 2060929
Michael Wager 2081894

Major Project 2020

1 Introduction

This document outlines the system and software requirements specification for the
configuration management system for Yeskia Inc. It contains business requirements,
security requirements and safety requirements.
Each Requirement contains:

• a unique identifier (ID) related to the corresponding risk

• a subject representing the component of the system

• a mitigation action title

• the requirements name

• a revision number for document version control

• a creation date

• a status indicating the approval state

• a description containing the actual requirement details

• a field for additional comments

1

Major Project 2020

2 Non-Functional Requirements

ID: 0.1.1
Subject: General Requirement
Category: Business/Security Requirement
Mitigation: Ensure availability, safety and security of the plant
Name: Limit side effects of CM
Revision: 1 Date: 30.10.2020 Status: approved
Description: The implementation of a Configuration management shall not
have an adverse effect on availability, safety and security of the plant. Further,
avoid any negative side effect regarding the production process.
Comments:

ID: 0.1.2
Subject: General Requirement
Category: Business/Security/Safety Requirement
Mitigation: Minimize susceptibility to errors
Name: Good usability
Revision: 1 Date: 30.10.2020 Status: approved
Description: To reduce the probability of errors due to the usage of the
configuration management, an intuitive usability shall be provided.
Comments: Evaluate the target user group and adapt the human machine
interface accordingly.

ID: 0.1.3
Subject: General Requirement
Mitigation: Optimize implementation effort and cost factor
Name: Tool selection
Revision: 1 Date: 30.10.2020 Status: approved
Description: Prefer already available state-of-the-art tools if applicable. If
possible, free of charge software should be selected.
Comments:

2

Major Project 2020

3 Functional Requirements

ID: 0.1.4
Subject: General Requirement
Mitigation: Prevent unauthorized data access
Name: Secured storage of data
Revision: 1 Date: 30.10.2020 Status: approved
Description: Sensitive data, acquired from the plant by the configuration
management system, shall be stored securely. Unauthorized access to this
data shall be prevented.
Comments: Either use data encryption or proper access control.

ID: 0.1.5
Subject: General Requirement
Mitigation: Prevent unauthorized data access
Name: Secured communication channels
Revision: 1 Date: 30.10.2020 Status: postponed
Description: Communication between the configuration management system
and the plant components shall be implemented in a secured manner.
Comments: Either use secure communication protocols or limit physical
access to the network segments.

ID: 1.1.1
Subject: Festo MES4 System
Mitigation: Automatic application version logging
Name: Application version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

3

Major Project 2020

ID: 1.1.2
Subject: Festo MES4 System
Mitigation: Automatic application version logging
Name: Application version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 1.1.3
Subject: Festo MES4 System
Mitigation: Automatic application version logging
Name: Store records only on application change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the application version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 1.1.4
Subject: Festo MES4 System
Mitigation: Automatic application version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 1.1.5
Subject: Festo MES4 System
Mitigation: Automatic application version logging
Name: Notification in case of application version change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected application version change event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

4

Major Project 2020

ID: 1.1.6
Subject: Festo MES4 System
Mitigation: Automatic application version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 1.1.7
Subject: Festo MES4 System
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact binary integrity surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes
within the artifact section. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 1.1.8
Subject: Festo MES4 System
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

5

Major Project 2020

ID: 1.1.9
Subject: Festo MES4 System
Mitigation: Detection and logging of unauthorized artifact changes
Name: Logging of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each binary integrity modification event shall trigger the sys-
tem to automatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 1.1.10
Subject: Festo MES4 System
Mitigation: Detection and logging of unauthorized artifact changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 1.1.11
Subject: Festo MES4 System
Mitigation: Detection and logging of unauthorized artifact changes
Name: Notification in case of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected binary change event, the system shall send
a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 1.1.12
Subject: Festo MES4 System
Mitigation: Detection and logging of unauthorized artifact changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

6

Major Project 2020

ID: 1.1.13
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 1.1.14
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

ID: 1.1.15
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

7

Major Project 2020

ID: 1.1.16
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 1.1.17
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Transparent version control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a version con-
trol framework to trace detailed changes of the application content.
Comments: The version control implementation should be directly linked
with the ticket system and release management domains.

ID: 1.1.18
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Transparent version control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of an open source solution
should be preferred.

8

Major Project 2020

ID: 1.1.19
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Transparent version control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 1.1.20
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Roll out history of application releases
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall record any deployment of
releases to the MES4 central SCADA system. Each record shall contain the
following data:

• Date

• Version

• Purpose

Comments: The release management implementation should be directly
linked with the ticket system and version control domains.

ID: 1.1.21
Subject: Festo MES4 System
Mitigation: Comprehensive development process
Name: Automatic release deployment roll back
Revision: 1 Date: 30.10.2020 Status: postponed
Description: In case of a necessary roll back, the system shall provide an
automated solution.
Comments: Until integration of the automated system, the release deploy-
ment roll back shall be accomplished manually.

9

Major Project 2020

ID: 2.1.1
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 2.1.2
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 2.1.3
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

10

Major Project 2020

ID: 2.1.4
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 2.1.5
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 2.1.6
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 2.2.1
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic application version logging
Name: Application version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

11

Major Project 2020

ID: 2.2.2
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic application version logging
Name: Application version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 2.2.3
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic application version logging
Name: Store records only on application change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the application version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 2.2.4
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic application version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 2.2.5
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic application version logging
Name: Notification in case of application version change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected application version change event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

12

Major Project 2020

ID: 2.2.6
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Automatic application version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 150 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 2.3.1
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact binary integrity surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes
within the artifact section. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 2.3.2
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

13

Major Project 2020

ID: 2.3.3
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of unauthorized artifact changes
Name: Logging of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each binary integrity modification event shall trigger the sys-
tem to automatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 2.3.4
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of unauthorized artifact changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 2.3.5
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of unauthorized artifact changes
Name: Notification in case of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected binary change event, the system shall send
a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 2.3.6
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of unauthorized artifact changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

14

Major Project 2020

ID: 2.4.1
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 2.4.2
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

ID: 2.4.3
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

15

Major Project 2020

ID: 2.4.4
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 2.4.5
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Transparent version control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a version con-
trol framework to trace detailed changes of the application content.
Comments: The version control implementation should be directly linked
with the ticket system and release management domains.

ID: 2.4.6
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Transparent version control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of a open source solution
should be preferred.

16

Major Project 2020

ID: 2.4.7
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Transparent version control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 2.4.8
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Roll out history of application releases
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall record any deployment of
releases to the MES4 central SCADA system. Each record shall contain the
following data:

• Date

• Version

• Purpose

Comments: The release management implementation should be directly
linked with the ticket system and version control domains.

ID: 2.4.9
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Comprehensive development process
Name: Automatic release deployment roll back
Revision: 1 Date: 30.10.2020 Status: postponed
Description: In case of a necessary roll back, the system shall provide an
automated solution.
Comments: Until integration of the automated system, the release deploy-
ment roll back shall be accomplished manually.

17

Major Project 2020

ID: 2.5.1
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of parameter changes
Name: Parameter change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
parameter values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 2.5.2
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of parameter changes
Name: Parameter query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Parameter values shall be queried at least 4 times per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 2.5.3
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of parameter changes
Name: Logging of Parameter value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each parameter adjustment shall trigger the system to auto-
matically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 2.5.4
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of parameter changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

18

Major Project 2020

ID: 2.5.5
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of parameter changes
Name: Notification in case of parameter adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected paremeter adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 2.5.6
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of parameter changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 1500 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 2.5.7
Subject: Siemens Simatic S7 ET200SP CPU1515-SP
Mitigation: Detection and logging of parameter changes
Name: Parameter changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Parameter changes shall be comparable to previous versions in
a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 3.1.1
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

19

Major Project 2020

ID: 3.1.2
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 3.1.3
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 3.1.4
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 3.1.5
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

20

Major Project 2020

ID: 3.1.6
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 3.2.1
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 3.2.2
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 3.2.3
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

21

Major Project 2020

ID: 3.2.4
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 3.2.5
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 3.2.6
Subject: IO Link ET200SP IM155-6PN-HF
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 4.1.1
Subject: HMI TP700
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

22

Major Project 2020

ID: 4.1.2
Subject: HMI TP700
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 4.1.3
Subject: HMI TP700
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 4.1.4
Subject: HMI TP700
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 4.1.5
Subject: HMI TP700
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

23

Major Project 2020

ID: 4.1.6
Subject: HMI TP700
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 4.2.1
Subject: HMI TP700
Mitigation: Automatic application version logging
Name: Application version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 4.2.2
Subject: HMI TP700
Mitigation: Automatic application version logging
Name: Application version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

24

Major Project 2020

ID: 4.2.3
Subject: HMI TP700
Mitigation: Automatic application version logging
Name: Store records only on application change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the application version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 4.2.4
Subject: HMI TP700
Mitigation: Automatic application version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 4.2.5
Subject: HMI TP700
Mitigation: Automatic application version logging
Name: Notification in case of application version change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected application version change event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 4.2.6
Subject: HMI TP700
Mitigation: Automatic application version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 150 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

25

Major Project 2020

ID: 4.3.1
Subject: HMI TP700
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact binary integrity surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes
within the artifact section. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 4.3.2
Subject: HMI TP700
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 4.3.3
Subject: HMI TP700
Mitigation: Detection and logging of unauthorized artifact changes
Name: Logging of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each binary integrity modification event shall trigger the sys-
tem to automatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

26

Major Project 2020

ID: 4.3.4
Subject: HMI TP700
Mitigation: Detection and logging of unauthorized artifact changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 4.3.5
Subject: HMI TP700
Mitigation: Detection and logging of unauthorized artifact changes
Name: Notification in case of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected binary change event, the system shall send
a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 4.3.6
Subject: HMI TP700
Mitigation: Detection and logging of unauthorized artifact changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

27

Major Project 2020

ID: 4.4.1
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 4.4.2
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

ID: 4.4.3
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

28

Major Project 2020

ID: 4.4.4
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 4.4.5
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Transparent version control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a version con-
trol framework to trace detailed changes of the application content.
Comments: The version control implementation should be directly linked
with the ticket system and release management domains.

ID: 4.4.6
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Transparent version control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of a open source solution
should be preferred.

29

Major Project 2020

ID: 4.4.7
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Transparent version control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 4.4.8
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Roll out history of application releases
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall record any deployment of
releases to the MES4 central SCADA system. Each record shall contain the
following data:

• Date

• Version

• Purpose

Comments: The release management implementation should be directly
linked with the ticket system and version control domains.

ID: 4.4.9
Subject: HMI TP700
Mitigation: Comprehensive development process
Name: Automatic release deployment roll back
Revision: 1 Date: 30.10.2020 Status: postponed
Description: In case of a necessary roll back, the system shall provide an
automated solution.
Comments: Until integration of the automated system, the release deploy-
ment roll back shall be accomplished manually.

30

Major Project 2020

ID: 4.5.1
Subject: HMI TP700
Mitigation: User management
Name: User management modification surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 4.5.2
Subject: HMI TP700
Mitigation: User management
Name: User management modification query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The user management information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 4.5.3
Subject: HMI TP700
Mitigation: User management
Name: Store records only on user management modification events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the user management compared the current stored record.
Comments: Avoid unnecessary redundant records.

31

Major Project 2020

ID: 4.5.4
Subject: HMI TP700
Mitigation: User management
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 4.5.5
Subject: HMI TP700
Mitigation: User management
Name: Notification in case of application user management modification events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected user management modification event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 4.5.6
Subject: HMI TP700
Mitigation: User management
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 150 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 4.5.7
Subject: HMI TP700
Mitigation: User management
Name: User management differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

32

Major Project 2020

ID: 5.1.1
Subject: D-Link DAP-1665
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 5.1.2
Subject: D-Link DAP-1665
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 5.1.3
Subject: D-Link DAP-1665
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

33

Major Project 2020

ID: 5.1.4
Subject: D-Link DAP-1665
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 5.1.5
Subject: D-Link DAP-1665
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 5.1.6
Subject: D-Link DAP-1665
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 5.2.1
Subject: D-Link DAP-1665
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

34

Major Project 2020

ID: 5.2.2
Subject: D-Link DAP-1665
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 5.2.3
Subject: D-Link DAP-1665
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 5.2.4
Subject: D-Link DAP-1665
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 5.2.5
Subject: D-Link DAP-1665
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

35

Major Project 2020

ID: 5.2.6
Subject: D-Link DAP-1665
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 6.1.1
Subject: Fibreoptic SOE4-FO-L-HF2
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 6.1.2
Subject: Fibreoptic SOE4-FO-L-HF2
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 6.1.3
Subject: Fibreoptic SOE4-FO-L-HF2
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

36

Major Project 2020

ID: 6.1.4
Subject: Fibreoptic SOE4-FO-L-HF2
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 6.1.5
Subject: Fibreoptic SOE4-FO-L-HF2
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 6.1.6
Subject: Fibreoptic SOE4-FO-L-HF2
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 7.1.1
Subject: DriveMotor Control M-MZ-4-30
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

37

Major Project 2020

ID: 7.1.2
Subject: DriveMotor Control M-MZ-4-30
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 7.1.3
Subject: DriveMotor Control M-MZ-4-30
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 7.1.4
Subject: DriveMotor Control M-MZ-4-30
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 7.1.5
Subject: DriveMotor Control M-MZ-4-30
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

38

Major Project 2020

ID: 7.1.6
Subject: DriveMotor Control M-MZ-4-30
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 8.1.1
Subject: MURR Mico 2.6
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 8.1.2
Subject: MURR Mico 2.6
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 8.1.3
Subject: MURR Mico 2.6
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

39

Major Project 2020

ID: 8.1.4
Subject: MURR Mico 2.6
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 8.1.5
Subject: MURR Mico 2.6
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 8.1.6
Subject: MURR Mico 2.6
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 9.1.1
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

40

Major Project 2020

ID: 9.1.2
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 9.1.3
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 9.1.4
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 9.1.5
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

41

Major Project 2020

ID: 9.1.6
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 9.2.1
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Detection and logging of parameter changes
Name: Parameter change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
parameter values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 9.2.2
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Detection and logging of parameter changes
Name: Parameter query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Parameter values shall be queried at least 4 times per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 9.2.3
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Detection and logging of parameter changes
Name: Logging of Parameter value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each parameter adjustment shall trigger the system to auto-
matically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

42

Major Project 2020

ID: 9.2.4
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Detection and logging of parameter changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 9.2.5
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Detection and logging of parameter changes
Name: Notification in case of parameter adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected paremeter adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 9.2.6
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Detection and logging of parameter changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 1500 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 9.2.7
Subject: TURCK RFID Hub TBEN-S2-2RFID-4DXP
Mitigation: Detection and logging of parameter changes
Name: Parameter changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Parameter changes shall be comparable to previous versions in
a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

43

Major Project 2020

ID: 10.1.1
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 10.1.2
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 10.1.3
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

44

Major Project 2020

ID: 10.1.4
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 10.1.5
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 10.1.6
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 10.2.1
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

45

Major Project 2020

ID: 10.2.2
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 10.2.3
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 10.2.4
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 10.2.5
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

46

Major Project 2020

ID: 10.2.6
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 10.3.1
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes (HW)
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 10.3.2
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes (HW)
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 10.3.3
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes (HW)
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

47

Major Project 2020

ID: 10.3.4
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes (HW)
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 10.3.5
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes (HW)
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 10.3.6
Subject: Festo CMMP-AS-C2-3A-M3
Mitigation: Detection and logging of configuration changes (HW)
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 11.1.1
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

48

Major Project 2020

ID: 11.1.2
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 11.1.3
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 11.1.4
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 11.1.5
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

49

Major Project 2020

ID: 11.1.6
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 11.2.1
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic SPS application version logging
Name: Application version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 11.2.2
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic SPS application version logging
Name: Application version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

50

Major Project 2020

ID: 11.2.3
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic SPS application version logging
Name: Store records only on application change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the application version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 11.2.4
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic SPS application version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 11.2.5
Subject: Festo MES4 System
Mitigation: Automatic SPS application version logging
Name: Notification in case of SPS application version change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected SPS application version change event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 11.2.6
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic SPS application version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 200 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

51

Major Project 2020

ID: 11.3.1
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact binary integrity surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes
within the artifact section. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 11.3.2
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 11.3.3
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Detection and logging of unauthorized artifact changes
Name: Logging of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each binary integrity modification event shall trigger the sys-
tem to automatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

52

Major Project 2020

ID: 11.3.4
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Detection and logging of unauthorized artifact changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 11.3.5
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Detection and logging of unauthorized artifact changes
Name: Notification in case of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected binary change event, the system shall send
a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 11.3.6
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Detection and logging of unauthorized artifact changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

53

Major Project 2020

ID: 11.4.1
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 11.4.2
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

ID: 11.4.3
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

54

Major Project 2020

ID: 11.4.4
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 11.4.5
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Transparent version control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a version con-
trol framework to trace detailed changes of the application content.
Comments: The version control implementation should be directly linked
with the ticket system and release management domains.

ID: 11.4.6
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Transparent version control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of a open source solution
should be preferred.

55

Major Project 2020

ID: 11.4.7
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Transparent version control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 11.4.8
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Roll out history of application releases
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall record any deployment of
releases to the MES4 central SCADA system. Each record shall contain the
following data:

• Date

• Version

• Purpose

Comments: The release management implementation should be directly
linked with the ticket system and version control domains.

ID: 11.4.9
Subject: Festo SBOC-Q-R3C Camera App SPS
Mitigation: Comprehensive development process
Name: Automatic release deployment roll back
Revision: 1 Date: 30.10.2020 Status: postponed
Description: In case of a necessary roll back, the system shall provide an
automated solution.
Comments: Until integration of the automated system, the release deploy-
ment roll back shall be accomplished manually.

56

Major Project 2020

ID: 11.5.1
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic optical verification program application version logging
Name: Application version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 11.5.2
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic optical verification program application version logging
Name: Application version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 11.5.3
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic optical verification program application version logging
Name: Store records only on application change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the application version compared the current stored record.
Comments: Avoid unnecessary redundant records.

57

Major Project 2020

ID: 11.5.4
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic optical verification program application version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 11.5.5
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic optical verification program application version logging
Name: Notification in case of application version change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected application version change event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 11.5.6
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Automatic optical verification program application version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 1000 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 11.6.1
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact binary integrity surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes
within the artifact section. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

58

Major Project 2020

ID: 11.6.2
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 11.6.3
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of unauthorized artifact changes
Name: Logging of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each binary integrity modification event shall trigger the sys-
tem to automatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 11.6.4
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of unauthorized artifact changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 11.6.5
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of unauthorized artifact changes
Name: Notification in case of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected binary change event, the system shall send
a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

59

Major Project 2020

ID: 11.6.6
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of unauthorized artifact changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 11.7.1
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 11.7.2
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

60

Major Project 2020

ID: 11.7.3
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

ID: 11.7.4
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 11.7.5
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Transparent version control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a version con-
trol framework to trace detailed changes of the application content.
Comments: The version control implementation should be directly linked
with the ticket system and release management domains.

61

Major Project 2020

ID: 11.7.6
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Transparent version control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of a open source solution
should be preferred.

ID: 11.7.7
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Transparent version control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 11.7.8
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Roll out history of application releases
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall record any deployment of
releases to the MES4 central SCADA system. Each record shall contain the
following data:

• Date

• Version

• Purpose

Comments: The release management implementation should be directly
linked with the ticket system and version control domains.

62

Major Project 2020

ID: 11.7.9
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Comprehensive development process
Name: Automatic release deployment roll back
Revision: 1 Date: 30.10.2020 Status: postponed
Description: In case of a necessary roll back, the system shall provide an
automated solution.
Comments: Until integration of the automated system, the release deploy-
ment roll back shall be accomplished manually.

ID: 11.8.1
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of parameter changes
Name: Parameter change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
parameter values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 11.8.2
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of parameter changes
Name: Parameter query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Parameter values shall be queried at least 4 times per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

63

Major Project 2020

ID: 11.8.3
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of parameter changes
Name: Logging of Parameter value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each parameter adjustment shall trigger the system to auto-
matically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 11.8.4
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of parameter changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 11.8.5
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of parameter changes
Name: Notification in case of parameter adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected paremeter adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 11.8.6
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of parameter changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 1500 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

64

Major Project 2020

ID: 11.8.7
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of parameter changes
Name: Parameter changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Parameter changes shall be comparable to previous versions in
a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 11.9.1
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 11.9.2
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 11.9.3
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

65

Major Project 2020

ID: 11.9.4
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 11.9.5
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 11.9.6
Subject: Festo SBOC-Q-R3C Camera
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 12.1.1
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic firmware version logging
Name: FW version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

66

Major Project 2020

ID: 12.1.2
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic firmware version logging
Name: FW version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The FW version information shall be queried at least once per
hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 12.1.3
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic firmware version logging
Name: Store records only on firmware change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the firmware version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 12.1.4
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic firmware version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 12.1.5
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic firmware version logging
Name: Notification in case of firmware version change event
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected firmware version change event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

67

Major Project 2020

ID: 12.1.6
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic firmware version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 100 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 12.2.1
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic KUKA Robotic Language (KRL) application version logging
Name: Application version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 12.2.2
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic KUKA Robotic Language (KRL) application version logging
Name: Application version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

68

Major Project 2020

ID: 12.2.3
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic KUKA Robotic Language (KRL) application version logging
Name: Store records only on application change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the application version compared the current stored record.
Comments: Avoid unnecessary redundant records.

ID: 12.2.4
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic KUKA Robotic Language (KRL) application version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 12.2.5
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic KUKA Robotic Language (KRL) application version logging
Name: Notification in case of application version change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected application version change event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 12.2.6
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic KUKA Robotic Language (KRL) application version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 500 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

69

Major Project 2020

ID: 12.3.1
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact binary integrity surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes
within the artifact section. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 12.3.2
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 12.3.3
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Logging of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each binary integrity modification event shall trigger the sys-
tem to automatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

70

Major Project 2020

ID: 12.3.4
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 12.3.5
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Notification in case of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected binary change event, the system shall send
a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 12.3.6
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

71

Major Project 2020

ID: 12.4.1
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 12.4.2
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

ID: 12.4.3
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

72

Major Project 2020

ID: 12.4.4
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 12.4.5
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Transparent version control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a version con-
trol framework to trace detailed changes of the application content.
Comments: The version control implementation should be directly linked
with the ticket system and release management domains.

ID: 12.4.6
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Transparent version control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of a open source solution
should be preferred.

73

Major Project 2020

ID: 12.4.7
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Transparent version control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 12.4.8
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Roll out history of application releases
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall record any deployment of
releases to the MES4 central SCADA system. Each record shall contain the
following data:

• Date

• Version

• Purpose

Comments: The release management implementation should be directly
linked with the ticket system and version control domains.

ID: 12.4.9
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Automatic release deployment roll back
Revision: 1 Date: 30.10.2020 Status: postponed
Description: In case of a necessary roll back, the system shall provide an
automated solution.
Comments: Until integration of the automated system, the release deploy-
ment roll back shall be accomplished manually.

74

Major Project 2020

ID: 12.5.1
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic SPS application version logging
Name: Application version change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any artifact
version change. Events shall only be triggered once each change.
Comments: The artifact version could be acquired from the target device
using appropriate communication protocols.

ID: 12.5.2
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic SPS application version logging
Name: Application version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 12.5.3
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic SPS application version logging
Name: Store records only on application change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall only contain records triggered by a change
of the application version compared the current stored record.
Comments: Avoid unnecessary redundant records.

75

Major Project 2020

ID: 12.5.4
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic SPS application version logging
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 12.5.5
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic SPS application version logging
Name: Notification in case of SPS application version change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected SPS application version change event, the
system shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 12.5.6
Subject: KUKA KRC4 Robot Control
Mitigation: Automatic SPS application version logging
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 300 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 12.6.1
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact binary integrity surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes
within the artifact section. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

76

Major Project 2020

ID: 12.6.2
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Artifact version query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The application version information shall be queried at least
once per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

ID: 12.6.3
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Logging of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each binary integrity modification event shall trigger the sys-
tem to automatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 12.6.4
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 12.6.5
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Notification in case of binary change events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected binary change event, the system shall send
a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

77

Major Project 2020

ID: 12.6.6
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of unauthorized artifact changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 12.7.1
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 12.7.2
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

78

Major Project 2020

ID: 12.7.3
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

ID: 12.7.4
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 12.7.5
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Transparent version control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a version con-
trol framework to trace detailed changes of the application content.
Comments: The version control implementation should be directly linked
with the ticket system and release management domains.

79

Major Project 2020

ID: 12.7.6
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Transparent version control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of a open source solution
should be preferred.

ID: 12.7.7
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Transparent version control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 12.7.8
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Roll out history of application releases
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall record any deployment of
releases to the MES4 central SCADA system. Each record shall contain the
following data:

• Date

• Version

• Purpose

Comments: The release management implementation should be directly
linked with the ticket system and version control domains.

80

Major Project 2020

ID: 12.7.9
Subject: KUKA KRC4 Robot Control
Mitigation: Comprehensive development process
Name: Automatic release deployment roll back
Revision: 1 Date: 30.10.2020 Status: postponed
Description: In case of a necessary roll back, the system shall provide an
automated solution.
Comments: Until integration of the automated system, the release deploy-
ment roll back shall be accomplished manually.

ID: 12.8.1
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of parameter changes
Name: Parameter change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
parameter values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 12.8.2
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of parameter changes
Name: Parameter query interval
Revision: 1 Date: 30.10.2020 Status: approved
Description: The Parameter values shall be queried at least 4 times per hour.
Comments: Consider resulting possible high network load caused by high
polling rate.

81

Major Project 2020

ID: 12.8.3
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of parameter changes
Name: Logging of Parameter value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each parameter adjustment shall trigger the system to auto-
matically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 12.8.4
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of parameter changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

ID: 12.8.5
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of parameter changes
Name: Notification in case of parameter adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected paremeter adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 12.8.6
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of parameter changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 1500 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

82

Major Project 2020

ID: 12.8.7
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of parameter changes
Name: Parameter changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Parameter changes shall be comparable to previous versions in
a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

ID: 12.9.1
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of configuration changes
Name: Configuration change surveillance
Revision: 1 Date: 30.10.2020 Status: approved
Description: A surveillance service shall monitor and detect any changes of
configuration values. Changes shall only trigger once each change.
Comments: The implementation using a state-of-the-art hashing algorithm
with proper hemming distance is sufficient for detection reliability.

ID: 12.9.2
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of configuration changes
Name: Logging of configuration value adjustments
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each configuration adjustment shall trigger the system to au-
tomatically record the event persistently.
Comments: Using a suitable ticket system could be used for logging.

ID: 12.9.3
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of configuration changes
Name: Storage format
Revision: 1 Date: 30.10.2020 Status: approved
Description: The data records shall be stored in a format to fulfill machine
to machine interaction.
Comments: Data accessible for further automated analysis.

83

Major Project 2020

ID: 12.9.4
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of configuration changes
Name: Notification in case of configuration adjustment events
Revision: 1 Date: 30.10.2020 Status: approved
Description: In case of a detected configuration adjustment event, the system
shall send a notification to a defined recipient.
Comments: Using a suitable ticket system could be used for notification.

ID: 12.9.5
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of configuration changes
Name: Data history minimum record quantity
Revision: 1 Date: 30.10.2020 Status: approved
Description: The database shall be capable to store at least 50 records.
Comments: Additional logging should be evaluated regarding data protec-
tion regulation (data minimizing).

ID: 12.9.6
Subject: KUKA KRC4 Robot Control
Mitigation: Detection and logging of configuration changes
Name: Configuration changes differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Configuration changes shall be comparable to previous versions
in a detailed manner.
Comments: A code diff should be supported using a graphical user interface.

84

Major Project 2020

ID: 13.1.1
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 13.1.2
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

ID: 13.1.3
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

85

Major Project 2020

ID: 13.1.4
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 13.1.5
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Transparent design release control
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a design release
control framework to trace detailed changes of the content.
Comments: The design release control implementation should be directly
linked with the ticket system and release management domains.

ID: 13.1.6
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Design release control - Longevity support
Revision: 1 Date: 30.10.2020 Status: approved
Description: Selection of version control system shall be conducted to ensure
longevity support of at least 10 years.
Comments: If applicable, internal maintenance of a open source solution
should be preferred.

86

Major Project 2020

ID: 13.1.7
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Design release control - Artifact content differences comparison
Revision: 1 Date: 30.10.2020 Status: approved
Description: Content changes shall be comparable to previous versions in a
detailed manner.
Comments: A content diff should be supported using a graphical user inter-
face.

ID: 13.1.8
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Design modification application
Revision: 1 Date: 30.10.2020 Status: approved
Description: The system shall provide all data required for the physical
application of the new design state.
Comments: N/A

ID: 13.1.9
Subject: Hardware infrastructure
Mitigation: Hardware infrastructure design modification tracking
Name: Design modification differences
Revision: 1 Date: 30.10.2020 Status: postponed
Description: The content of the releases shall be comparable regarding
changes between design releases.
Comments: A ticket system could be used.

87

Major Project 2020

ID: 13.2.1
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Ticket system
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a ticket based
project management system in order to provide a guided development life
cycle.
Comments: The ticket system implementation should be directly linked with
the version control and release management domains.

ID: 13.2.2
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Ticket system - Unique identifier
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each ticket shall be represented by a unique identifier.
Comments: N/A

ID: 13.2.3
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Ticket system - User and role management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall support a user and role oriented man-
agement. Users shall be linked to roles, the roles shall be configurable regard-
ing authorization levels.
Comments: N/A

88

Major Project 2020

ID: 13.2.4
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Ticket system - Process oriented ticket management
Revision: 1 Date: 30.10.2020 Status: approved
Description: The ticket system shall implement the well established enter-
prise development process. Following attributes are mandatory:

• Lifecycle state

• Owner

• Severity/Priority

• Type/Class

• Target release

Comments: N/A

ID: 13.2.5
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Transparent spare part replacement tracking
Revision: 1 Date: 30.10.2020 Status: approved
Description: The configuration management shall implement a transparent
spare part replacement tracking framework to trace detailed changes of the
content.
Comments: The design release control implementation should be directly
linked with the ticket system and release management domains.

ID: 13.2.6
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Transparent spare part replacement tracking - automatic information aquisition
Revision: 1 Date: 30.10.2020 Status: postponed
Description: The system shall provide automatic information aquisition of
the replaced components, if applicable.
Comments: N/A

89

Major Project 2020

ID: 13.2.7
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Transparent spare part replacement tracking - unique spare part information
Revision: 1 Date: 30.10.2020 Status: approved
Description: Each record shall contain the following data:

• Equipment identification marking

• Serial number (removed part)

• Serial number (installed part)

• Revision status

Comments: N/A

ID: 13.2.8
Subject: Hardware infrastructure
Mitigation: Implementation of computer aided spare part replacement process
Name: Spare part replacement application
Revision: 1 Date: 30.10.2020 Status: approved
Description: The system shall provide a replacement instruction for appli-
cation.
Comments: N/A

90

Major Project 2020

C. Appendix: Integration Test

172

Major Project 2020

Master Industrial Security
University of Applied Sciences Augsburg

Test Report
Integration Test

Table 1: Student authors
Student Student ID
Alexander Holzmann 2081881
Markus Kamm 2060929
Michael Wager 2081894

Major Project 2020

1 Test Report

Report ID: CM_TR_RC1_integration_test_iteration1
Date: 02.12.2020
Tester: Team CM
Result: passed
Object under Test: CM server infrastructure - Release Candidate 1
Test Environment:

• Lenovo IdeaPad 510s
• Windows 10 Professional
• CPU Intel Core i7
• 8GB RAM
• WLAN network interface
• Wired LAN interface
• Oracle VM Virtual Box Version 6.1.8 r137981
• Webbrowser: Mozilla Firefox v83.0 (64bit)

Test result summary:
Step result
1. Login to GitLab web frontend passed
2. Create GitLab project passed
3. Add member to project group passed
4. Create new milestone passed
5. Create new issue passed
6. Reassign issue passed
7. Assign issue to milestone passed
8. Create new merge request and new branch passed
9. Modify content of repository passed
10. Approve and close merge request passed
11. Close milestone passed
12. Create new release (release freeze) passed

1

Major Project 2020

2 Test Steps

1. Login to GitLab web frontend
1.1 Access web frontend via URL "https://yeskia-hs.com"
Expected result: GitLab login website visible

passed

1.2 User login on web frontend (user: root, password:
Passw0rd!)
Expected result: GitLab user dashboard visible

passed

2. Create GitLab project
2.1 Create new blank project (button "new project")
Expected result: Project start page of created project

passed

3. Add member to project group
3.1 Open project member view (menu: project - members)
Expected result: formular for assigning members visible

passed

3.2 Assign member to project (search user and assign with
desired role description) and confirm
Expected result: new member invited via email to project

passed

4. Create new milestone
4.1 Create new milestone (menu: issue - milestones - new)
Expected result: formular for entering milestone information
visible

passed

4.2 Enter milestone information data (description, ...) and
confirm
Expected result: new milestone available

passed

5. Create new issue
5.1 Create new issue (menu: issue - new)
Expected result: formular for entering issue information vis-
ible

passed

5.2 Enter issue information data (description, ...) and con-
firm
Expected result: new issue available

passed

2

Major Project 2020

6. Reassign issue
6.1 Open existing issue (menu: issue)
Expected result: existing issue information visible

passed

6.2 Change assignee to other user (edit assignee) and con-
firm
Expected result: new assigned user to issue

passed

7. Assign issue to milestone
7.1 Assign existing issue to milestone (menu: issue - mile-
stones)
Expected result: issue assigned to milestone

passed

8. Create new merge request and new branch
8.1 Create new merge request (menu: merge request - new)
Expected result: formular for entering merge request infor-
mation visible

passed

8.2 Enter merge request information data (description, ...)
and confirm
Expected result: new merge request available

passed

8.3 Assign merge request to maintainer (edit dropdown)
Expected result: maintainer assigned to merge request

passed

8.4 Create associated branch for git repository (implicitly
created with merge request)
Expected result: associated branch available

passed

3

Major Project 2020

9. Modify content of repository
9.1 Clone repository content to local machine (git clone
<repository URL>)
Expected result: repository content available on local drive

passed

9.2 Checkout branch associated with merge request (git
checkout <branchname>)
Expected result: repository branch changed to
<branchname>

passed

9.3 Modify content of the repository on local drive (change
any file content)
Expected result: file content differs to origin state

passed

9.4 Stage and commit modified files (git commit -a -m
<commit message>)
Expected result: commit successful

passed

9.5 Push commit to server (git push origin HEAD)
Expected result: commit successfully pushed to server

passed

10. Approve and close merge request
10.1 Close issue (menu: issue - close)
Expected result: issue in state closed

passed

10.2 Prepare merge request for closing (remove draft prefix
from name)
Expected result: merge request name without the prefix
"draft"

passed

10.3 Approve merge request (button approve)
Expected result: merge request marked as approved

passed

10.4 Merge changes to master branch (button merge)
Expected result: repository content changes available at
master branch, merge request in state merged

passed

11. Close milestone
11.1 Close milestone (menu: milestone - close)
Expected result: milestone in state closed

passed

4

Major Project 2020

12. Create new release (release freeze)
12.1 Create new release (menu: release - new)
Expected result: formular for entering release information
visible

passed

12.2 Assign existing milestone to release (dropdown mile-
stones)
Expected result: milestone assigned to release

passed

12.3 Enter release information data (description, ...) and
confirm closing
Expected result: new release available and closed

passed

z

5

Major Project 2020

D. Appendix: Customer Integration Test

179

Major Project 2020

Master Industrial Security
University of Applied Sciences Augsburg

Test Report
Customer Integration Test

Table 1: Student authors
Student Student ID
Alexander Holzmann 2081881
Markus Kamm 2060929
Michael Wager 2081894

Major Project 2020

1 Test Report - Customer Integration 1

Report ID: CM_TR_RC1_customer_integration_test_iteration1
Date: 03.12.2020
Tester: Team CM
Result: failed
Object under Test: CM server infrastructure - Release Candidate 1
Test Environment:

• DELL OptiPlex 5050
• Windows 10 Professional
• CPU Intel Core i5
• 8GB RAM
• Wired LAN interface (2x; to Local Network, deactivated)
• Oracle VM Virtual Box Version 6.1.16 r140961
• Webbrowser: Mozilla Firefox v83.0 (64bit)

Test result summary:
Step result
1. Login to GitLab web frontend failed
2. Create GitLab project NA
3. Add member to project group NA
4. Create new milestone NA
5. Create new issue NA
6. Reassign issue NA
7. Assign issue to milestone NA
8. Create new merge request and new branch NA
9. Modify content of repository NA
10. Approve and close merge request NA
11. Close milestone NA
12. Create new release (release freeze) NA

1

Major Project 2020

2 Test Steps - Customer Integration 1

1. Login to GitLab web frontend
1.1 Access web frontend via URL "https://yeskia-hs.com"
Expected result: GitLab login website visible

failed

1.2 User login on web frontend (user: root, password:
Passw0rd!)
Expected result: GitLab user dashboard visible

NA

2. Create GitLab project
2.1 Create new blank project (button "new project")
Expected result: Project start page of created project

NA

3. Add member to project group
3.1 Open project member view (menu: project - members)
Expected result: formular for assigning members visible

NA

3.2 Assign member to project (search user and assign with
desired role description) and confirm
Expected result: new member invited via email to project

NA

4. Create new milestone
4.1 Create new milestone (menu: issue - milestones - new)
Expected result: formular for entering milestone information
visible

NA

4.2 Enter milestone information data (description, ...) and
confirm
Expected result: new milestone available

NA

5. Create new issue
5.1 Create new issue (menu: issue - new)
Expected result: formular for entering issue information vis-
ible

NA

5.2 Enter issue information data (description, ...) and con-
firm
Expected result: new issue available

NA

2

Major Project 2020

6. Reassign issue
6.1 Open existing issue (menu: issue)
Expected result: existing issue information visible

NA

6.2 Change assignee to other user (edit assignee) and con-
firm
Expected result: new assigned user to issue

NA

7. Assign issue to milestone
7.1 Assign existing issue to milestone (menu: issue - mile-
stones)
Expected result: issue assigned to milestone

NA

8. Create new merge request and new branch
8.1 Create new merge request (menu: merge request - new)
Expected result: formular for entering merge request infor-
mation visible

NA

8.2 Enter merge request information data (description, ...)
and confirm
Expected result: new merge request available

NA

8.3 Assign merge request to maintainer (edit dropdown)
Expected result: maintainer assigned to merge request

NA

8.4 Create associated branch for git repository (implicitly
created with merge request)
Expected result: associated branch available

NA

3

Major Project 2020

9. Modify content of repository
9.1 Clone repository content to local machine (git clone
<repository URL>)
Expected result: repository content available on local drive

NA

9.2 Checkout branch associated with merge request (git
checkout <branchname>)
Expected result: repository branch changed to
<branchname>

NA

9.3 Modify content of the repository on local drive (change
any file content)
Expected result: file content differs to origin state

NA

9.4 Stage and commit modified files (git commit -a -m
<commit message>)
Expected result: commit successful

NA

9.5 Push commit to server (git push origin HEAD)
Expected result: commit successfully pushed to server

NA

10. Approve and close merge request
10.1 Close issue (menu: issue - close)
Expected result: issue in state closed

NA

10.2 Prepare merge request for closing (remove draft prefix
from name)
Expected result: merge request name without the prefix
"draft"

NA

10.3 Approve merge request (button approve)
Expected result: merge request marked as approved

NA

10.4 Merge changes to master branch (button merge)
Expected result: repository content changes available at
master branch, merge request in state merged

NA

11. Close milestone
11.1 Close milestone (menu: milestone - close)
Expected result: milestone in state closed

NA

4

Major Project 2020

12. Create new release (release freeze)
12.1 Create new release (menu: release - new)
Expected result: formular for entering release information
visible

NA

12.2 Assign existing milestone to release (dropdown mile-
stones)
Expected result: milestone assigned to release

NA

12.3 Enter release information data (description, ...) and
confirm closing
Expected result: new release available and closed

NA

5

Major Project 2020

3 Test Report - Customer Integration 2

Report ID: CM_TR_RC1_customer_integration_test_iteration2
Date: 03.12.2020
Tester: Team CM
Result: failed
Object under Test: CM server infrastructure - Release Candidate 1
Test Environment:

• DELL OptiPlex 5050
• Windows 10 Professional
• CPU Intel Core i5
• 8GB RAM
• Wired LAN interface (2x; to Local Network, deactivated)
• Oracle VM Virtual Box Version 6.1.16 r140961
• Webbrowser: Mozilla Firefox v83.0 (64bit)

Test result summary:
Step result
1. Login to GitLab web frontend passed
2. Create GitLab project passed
3. Add member to project group passed
4. Create new milestone passed
5. Create new issue passed
6. Reassign issue passed
7. Assign issue to milestone passed
8. Create new merge request and new branch failed
9. Modify content of repository NA
10. Approve and close merge request NA
11. Close milestone NA
12. Create new release (release freeze) NA

6

Major Project 2020

4 Test Steps - Customer Integration 2

1. Login to GitLab web frontend
1.1 Access web frontend via URL "https://yeskia-hs.com"
Expected result: GitLab login website visible

passed

1.2 User login on web frontend (user: root, password:
Passw0rd!)
Expected result: GitLab user dashboard visible

passed

2. Create GitLab project
2.1 Create new blank project (button "new project")
Expected result: Project start page of created project

passed

3. Add member to project group
3.1 Open project member view (menu: project - members)
Expected result: formular for assigning members visible

passed

3.2 Assign member to project (search user and assign with
desired role description) and confirm
Expected result: new member invited via email to project

passed

4. Create new milestone
4.1 Create new milestone (menu: issue - milestones - new)
Expected result: formular for entering milestone information
visible

passed

4.2 Enter milestone information data (description, ...) and
confirm
Expected result: new milestone available

passed

5. Create new issue
5.1 Create new issue (menu: issue - new)
Expected result: formular for entering issue information vis-
ible

passed

5.2 Enter issue information data (description, ...) and con-
firm
Expected result: new issue available

passed

7

Major Project 2020

6. Reassign issue
6.1 Open existing issue (menu: issue)
Expected result: existing issue information visible

passed

6.2 Change assignee to other user (edit assignee) and con-
firm
Expected result: new assigned user to issue

passed

7. Assign issue to milestone
7.1 Assign existing issue to milestone (menu: issue - mile-
stones)
Expected result: issue assigned to milestone

passed

8. Create new merge request and new branch
8.1 Create new merge request (menu: merge request - new)
Expected result: formular for entering merge request infor-
mation visible

failed

8.2 Enter merge request information data (description, ...)
and confirm
Expected result: new merge request available

NA

8.3 Assign merge request to maintainer (edit dropdown)
Expected result: maintainer assigned to merge request

NA

8.4 Create associated branch for git repository (implicitly
created with merge request)
Expected result: associated branch available

NA

8

Major Project 2020

9. Modify content of repository
9.1 Clone repository content to local machine (git clone
<repository URL>)
Expected result: repository content available on local drive

NA

9.2 Checkout branch associated with merge request (git
checkout <branchname>)
Expected result: repository branch changed to
<branchname>

NA

9.3 Modify content of the repository on local drive (change
any file content)
Expected result: file content differs to origin state

NA

9.4 Stage and commit modified files (git commit -a -m
<commit message>)
Expected result: commit successful

NA

9.5 Push commit to server (git push origin HEAD)
Expected result: commit successfully pushed to server

NA

10. Approve and close merge request
10.1 Close issue (menu: issue - close)
Expected result: issue in state closed

NA

10.2 Prepare merge request for closing (remove draft prefix
from name)
Expected result: merge request name without the prefix
"draft"

NA

10.3 Approve merge request (button approve)
Expected result: merge request marked as approved

NA

10.4 Merge changes to master branch (button merge)
Expected result: repository content changes available at
master branch, merge request in state merged

NA

11. Close milestone
11.1 Close milestone (menu: milestone - close)
Expected result: milestone in state closed

NA

9

Major Project 2020

12. Create new release (release freeze)
12.1 Create new release (menu: release - new)
Expected result: formular for entering release information
visible

NA

12.2 Assign existing milestone to release (dropdown mile-
stones)
Expected result: milestone assigned to release

NA

12.3 Enter release information data (description, ...) and
confirm closing
Expected result: new release available and closed

NA

10

Major Project 2020

5 Test Report - Customer Integration 3

Report ID: CM_TR_RC1_customer_integration_test_iteration3
Date: 03.12.2020
Tester: Team CM
Result: passed
Object under Test: CM server infrastructure - Release Candidate 1
Test Environment:

• DELL OptiPlex 5050
• Windows 10 Professional
• CPU Intel Core i5
• 8GB RAM
• Wired LAN interface (2x; to Local Network, deactivated)
• Oracle VM Virtual Box Version 6.1.16 r140961
• Webbrowser: Mozilla Firefox v83.0 (64bit)

Test result summary:
Step result
1. Login to GitLab web frontend passed
2. Create GitLab project passed
3. Add member to project group passed
4. Create new milestone passed
5. Create new issue passed
6. Reassign issue passed
7. Assign issue to milestone passed
8. Create new merge request and new branch passed
9. Modify content of repository passed
10. Approve and close merge request passed
11. Close milestone passed
12. Create new release (release freeze) passed

11

Major Project 2020

6 Test Steps - Customer Integration 3

1. Login to GitLab web frontend
1.1 Access web frontend via URL "https://yeskia-hs.com"
Expected result: GitLab login website visible

passed

1.2 User login on web frontend (user: root, password:
Passw0rd!)
Expected result: GitLab user dashboard visible

passed

2. Create GitLab project
2.1 Create new blank project (button "new project")
Expected result: Project start page of created project

passed

3. Add member to project group
3.1 Open project member view (menu: project - members)
Expected result: formular for assigning members visible

passed

3.2 Assign member to project (search user and assign with
desired role description) and confirm
Expected result: new member invited via email to project

passed

4. Create new milestone
4.1 Create new milestone (menu: issue - milestones - new)
Expected result: formular for entering milestone information
visible

passed

4.2 Enter milestone information data (description, ...) and
confirm
Expected result: new milestone available

passed

5. Create new issue
5.1 Create new issue (menu: issue - new)
Expected result: formular for entering issue information vis-
ible

passed

5.2 Enter issue information data (description, ...) and con-
firm
Expected result: new issue available

passed

12

Major Project 2020

6. Reassign issue
6.1 Open existing issue (menu: issue)
Expected result: existing issue information visible

passed

6.2 Change assignee to other user (edit assignee) and con-
firm
Expected result: new assigned user to issue

passed

7. Assign issue to milestone
7.1 Assign existing issue to milestone (menu: issue - mile-
stones)
Expected result: issue assigned to milestone

passed

8. Create new merge request and new branch
8.1 Create new merge request (menu: merge request - new)
Expected result: formular for entering merge request infor-
mation visible

passed

8.2 Enter merge request information data (description, ...)
and confirm
Expected result: new merge request available

passed

8.3 Assign merge request to maintainer (edit dropdown)
Expected result: maintainer assigned to merge request

passed

8.4 Create associated branch for git repository (implicitly
created with merge request)
Expected result: associated branch available

passed

13

Major Project 2020

9. Modify content of repository
9.1 Clone repository content to local machine (git clone
<repository URL>)
Expected result: repository content available on local drive

passed

9.2 Checkout branch associated with merge request (git
checkout <branchpassedme>)
Expected result: repository branch changed to
<branchpassedme>

passed

9.3 Modify content of the repository on local drive (change
any file content)
Expected result: file content differs to origin state

passed

9.4 Stage and commit modified files (git commit -a -m
<commit message>)
Expected result: commit successful

passed

9.5 Push commit to server (git push origin HEAD)
Expected result: commit successfully pushed to server

passed

10. Approve and close merge request
10.1 Close issue (menu: issue - close)
Expected result: issue in state closed

passed

10.2 Prepare merge request for closing (remove draft prefix
from passedme)
Expected result: merge request passedme without the prefix
"draft"

passed

10.3 Approve merge request (button approve)
Expected result: merge request marked as approved

passed

10.4 Merge changes to master branch (button merge)
Expected result: repository content changes available at
master branch, merge request in state merged

passed

11. Close milestone
11.1 Close milestone (menu: milestone - close)
Expected result: milestone in state closed

passed

14

Major Project 2020

12. Create new release (release freeze)
12.1 Create new release (menu: release - new)
Expected result: formular for entering release information
visible

passed

12.2 Assign existing milestone to release (dropdown mile-
stones)
Expected result: milestone assigned to release

passed

12.3 Enter release information data (description, ...) and
confirm closing
Expected result: new release available and closed

passed

15

Major Project 2020

E. Appendix: Integration Test RC2

196

Major Project 2020

Master Industrial Security
University of Applied Sciences Augsburg

Test Report
Integration Test RC2

Table 1: Student authors
Student Student ID
Alexander Holzmann 2081881
Markus Kamm 2060929
Michael Wager 2081894

Major Project 2020

1 Test Report - Binary Integrity Surveillance

Report ID: CM_TR_RC2_integration_test_iteration1
Date: 15.12.2020
Tester: Team CM
Result: passed
Object under Test: Binary integrity surveillance - Release Candidate 2
Test Environment:

• Lenovo IdeaPad 510s
• Windows 10 Professional
• CPU Intel Core i7
• 8GB RAM
• WLAN network interface
• Wired LAN interface
• Oracle VM Virtual Box Version 6.1.8 r137981
• Webbrowser: Mozilla Firefox v83.0 (64bit)

Test result summary:
Step result
1. HW component not available passed
2. No checksum available passed
3. Checksum value change passed
4. Checksum no value change passed

1

Major Project 2020

2 Test Steps - Binary Integrity Surveillance

1. HW component not available
1.1 configure comm adapter stub to represent production
cell state "off"
Expected result: comm adapter configuration state "off"

passed

1.2 start-up surveillance application
Expected result: surveillance application running w/o error

passed

1.3 wait for check interval attempt
Expected result: exp. log output "Facility seems to be
down..."
Expected result: no issue created, no e-mail creation

passed

2. No checksum available
2.1 configure comm adapter stub to represent production
cell state "no checksum"
Expected result: comm adapter configuration state "no
checksum"

passed

2.2 start-up surveillance application
Expected result: surveillance application running w/o error

passed

2.3 wait for check interval attempt
Expected result: log output "Indicator for compromised ap-
plication"
Expected result: issue created, e-mail created

passed

3. Checksum value change
3.1 configure comm adapter stub to represent production
cell state "new checksum"
Expected result: comm adapter configuration state "new
checksum"

passed

3.2 start-up surveillance application
Expected result: surveillance application running w/o error

passed

3.3 wait for check interval attempt
Expected result: log output "Change detected"
Expected result: issue created, e-mail created

passed

2

Major Project 2020

4. Checksum no value change
4.1 configure comm adapter stub to represent production
cell state "no change"
Expected result: comm adapter configuration state "no
change"

passed

4.2 start-up surveillance application
Expected result: surveillance application running w/o error

passed

4.4 wait for check interval attempt
Expected result: log output "No changes detected"
Expected result: no issue created, no e-mail created

passed

3

Major Project 2020

3 Test Report - Spare Part Replacement Process

Report ID: CM_TR_RC2_integration_test_iteration2
Date: 16.12.2020
Tester: Team CM
Result: passed
Object under Test: Spare part replacement process - Release Candidate 2
Test Environment:

• Lenovo IdeaPad 510s
• Windows 10 Professional
• CPU Intel Core i7
• 8GB RAM
• WLAN network interface
• Wired LAN interface
• Oracle VM Virtual Box Version 6.1.8 r137981
• Webbrowser: Mozilla Firefox v83.0 (64bit)

Test result summary:
Step result
1. Spare part replacement - default case passed
2. Spare part replacement - date selection in future passed
3. Spare part replacement - mandatory serial field
empty

passed

4

Major Project 2020

4 Test Steps - Spare Part Replacement Process

1. Spare part replacement - default case
1.1 Access webserver requesting frontend start page
(https://yeskia-hs.com:30443)
Expected result: View of start page with process submission
form

passed

1.2 Select Show BOM invetory list
Expected result: Page listing the content of the inventory
database with correct content

passed

1.3 Check the value in field Date of replacement
Expected result: Field contains the current calendar date

passed

1.4 Open dropdown list User
Expected result: Dropdown list showing all defined replace-
ment users.

passed

1.5 Open dropdown list Material equipment identifier
Expected result: Field contains all available HW compo-
nents of the facility

passed

1.6 Fill all fields with proper values for the selected part to
replace
Expected result: All fields contain proper values, form ready
to submit

passed

1.7 Submit the replacement form (button Submit)
Expected result: Modalwindow pop-up with text: Data suc-
cessfully saved

passed

1.8 Check BOM invetory list for updated values
Expected result: The selected part is updated with the
passed values

passed

1.9 Verify for successful issue creation and mail notification
Expected result: The GitLab issue is created with the de-
sired content, a notification mail is sent to the submitter

passed

5

Major Project 2020

2. Spare part replacement - date selection in future
2.1 Access webserver requesting frontend start page
(https://yeskia-hs.com:30443)
Expected result: View of start page with process submission
form

passed

2.2 Select a date value pointing to the future in the field
Date of replacement
Expected result: desired date value displayed

passed

2.3 Fill all remaining fields with proper values for the se-
lected part to replace
Expected result: All fields contain proper values, form ready
to submit

passed

2.4 Submit the replacement form (button Submit)
Expected result: Modalwindow pop-up with text: Date
must not be in future

passed

3. Spare part replacement - mandatory serial field empty
3.1 Access webserver requesting frontend start page
(https://yeskia-hs.com:30443)
Expected result: View of start page with process submission
form

passed

2.3 Fill all fields with proper values for the selected part
to replace, but leave the field Serial number - installed
part empty
Expected result: All fields, excepting the serial number, con-
tain proper values, form ready to submit

passed

2.4 Submit the replacement form (button Submit)
Expected result: Modalwindow pop-up with text: Please
verify serial number, must not be empty for component:
BMK

passed

6

Major Project 2020

F. Appendix: System Integration Test RC2

204

Major Project 2020

Master Industrial Security
University of Applied Sciences Augsburg

Test Report
System Integration Test RC2

Table 1: Student authors
Student Student ID
Alexander Holzmann 2081881
Markus Kamm 2060929
Michael Wager 2081894

Major Project 2020

1 Test Report - Binary Integrity Surveillance

Report ID: CM_TR_RC2_system_integration_test_iteration1
Date: 15.12.2020
Tester: Team CM
Result: passed
Object under Test: Binary integrity surveillance - Release Candidate 2
Test Environment:

• DELL OptiPlex 5050
• Windows 10 Professional
• CPU Intel Core i5
• 8GB RAM
• Wired LAN interface (2x; to Local Network, deactivated)
• Oracle VM Virtual Box Version 6.1.16 r140961
• Webbrowser: Mozilla Firefox v83.0 (64bit)
• Festo CP Factory RASS-KUKA
• Siemens Simatic S7 CPU1515-SP (plcRASS)

Test result summary:
Step result
1. HW component not available passed
2. No checksum available passed
3. Checksum value change passed
4. Checksum no value change passed

1

Major Project 2020

2 Test Steps - Binary Integrity Surveillance

1. HW component not available
1.1 power off production cell
Expected result: power indication lights off

passed

1.2 start-up surveillance application
Expected result: surveillance application running w/o error

passed

1.3 wait for check interval attempt
Expected result: exp. log output "Facility seems to be
down..."
Expected result: no issue created, no e-mail creation

passed

2. No checksum available
2.1 power on production cell
Expected result: power indication lights onr

passed

2.2 deploy application w/o "getChecksum" function
Expected result: TIA indicating successful deployment

passed

2.3 start-up surveillance application
Expected result: surveillance application running w/o error

passed

2.4 wait for check interval attempt
Expected result: log output "Indicator for compromised ap-
plication"
Expected result: issue created, e-mail created

passed

3. Checksum value change
3.1 power on production cell
Expected result: power indication lights onr

passed

3.2 deploy application with "getChecksum" function
Expected result: TIA indicating successful deployment

passed

3.3 start-up surveillance application
Expected result: surveillance application running w/o error

passed

3.4 wait for check interval attempt
Expected result: any log output

passed

3.5 re-deploy application with arbitrary change
Expected result: TIA indicating successful deployment

passed

3.6 wait for check interval attempt
Expected result: log output "Change detected"
Expected result: issue created, e-mail created

passed

2

Major Project 2020

4. Checksum no value change
4.1 power on production cell
Expected result: power indication lights onr

passed

4.2 verify valid application deployed (refer test stage 3)
Expected result: TIA indicating no checksum value change

passed

4.3 start-up surveillance application
Expected result: surveillance application running w/o error

passed

4.4 wait for check interval attempt
Expected result: log output "No change detected"
Expected result: no issue created, no e-mail created

passed

3

Major Project 2020

3 Test Report - Spare Part Replacement Process

Report ID: CM_TR_RC2_system_integration_test_iteration2
Date: 15.12.2020
Tester: Team CM
Result: passed
Object under Test: Spare part replacement process - Release Candidate 2
Test Environment:

• DELL OptiPlex 5050
• Windows 10 Professional
• CPU Intel Core i5
• 8GB RAM
• Wired LAN interface (2x; to Local Network, deactivated)
• Oracle VM Virtual Box Version 6.1.16 r140961
• Webbrowser: Mozilla Firefox v83.0 (64bit)
• Festo CP Factory RASS-KUKA
• Siemens Simatic S7 CPU1515-SP (plcRASS)

Test result summary:
Step result
1. Spare part replacement - default case passed
2. Spare part replacement - date selection in future passed
3. Spare part replacement - mandatory serial field
empty

passed

4

Major Project 2020

4 Test Steps - Spare Part Replacement Process

1. HW component not available
1.1 power off production cell
Expected result: power indication lights off

passed

1.2 start-up surveillance application
Expected result: surveillance application running w/o error

passed

1.3 wait for check interval attempt
Expected result: exp. log output "Facility seems to be
down..."
Expected result: no issue created, no e-mail creation

passed

2. No checksum available
2.1 power on production cell
Expected result: power indication lights onr

passed

2.2 deploy application w/o "getChecksum" function
Expected result: TIA indicating successful deployment

passed

2.3 start-up surveillance application
Expected result: surveillance application running w/o error

passed

2.4 wait for check interval attempt
Expected result: log output "Indicator for compromised ap-
plication"
Expected result: issue created, e-mail created

passed

3. Checksum value change
3.1 power on production cell
Expected result: power indication lights onr

passed

3.2 deploy application with "getChecksum" function
Expected result: TIA indicating successful deployment

passed

3.3 start-up surveillance application
Expected result: surveillance application running w/o error

passed

3.4 wait for check interval attempt
Expected result: any log output

passed

3.5 re-deploy application with arbitrary change
Expected result: TIA indicating successful deployment

passed

3.6 wait for check interval attempt
Expected result: log output "Change detected"
Expected result: issue created, e-mail created

passed

5

Major Project 2020

4. Checksum no value change
4.1 power on production cell
Expected result: power indication lights onr

passed

4.2 verify valid application deployed (refer test stage 3)
Expected result: TIA indicating no checksum value change

passed

4.3 start-up surveillance application
Expected result: surveillance application running w/o error

passed

4.4 wait for check interval attempt
Expected result: log output "No change detected"
Expected result: no issue created, no e-mail created

passed

6

Major Project 2020

G. Appendix: Project Status Reports

212

Project
MIS 2020 – Major Project
Configuration Management

STATUS REPORT NO. 1 02.11.2020

Project Start: 06.10.2020
Planned End: 22.12.2020
Project Lead: A. Holzmann

Reporting Period:

06.10.2020 – 30.10.2020
Reason:
Milestone – Requirements Freeze

Current Status (target vs. actual)

►

Initialization Analysis Concept Design Implementation Validation

Expected Results within the Reporting Period achieved / not achieved

o Project setup defined and established

o Project definition and infrastructure installed (incl. project plan)

o Scenario definition developed

o Risk assessment evaluated and documented

o Requirements specification created

o Plant hardware infrastructure analysis finished

o Plant software infrastructure analysis finished

Reasons for Deviation

o Rescheduled the installation of the change management software framework (ticket system and version control
management software) with the objective of early collecting modifications by other groups regarding the develop-
ment path.

Further procedure Responsible

o Finalization of the software infrastructure analysis has to be postponed to the next phase Team

o

o

o

Project costs Budget Effort reporting

period
Effort total Remaining

budget

External 0€ 0€ 0€ 0€

Internal 79,200€ 28,800€ 28,800€ 50,400€

Total 79,200€ 28,800€ 28,800€ 50,400€

Notes

Budget calculation:

hourly rate per person: 120€
20h per week
Team size: 3 developers
Project duration: 11 weeks

Report author:

Team config management

Receiver:

Prof. Dr. P. Richard

Date of next report:

13.11.2020

Project
MIS 2020 – Major Project
Configuration Management

STATUS REPORT NO. 2 17.11.2020

Project Start: 06.10.2020
Planned End: 22.12.2020
Project Lead: A. Holzmann

Reporting Period:

01.11.2020 – 16.11.2020
Reason:
Milestone – Concept Freeze

Current Status (target vs. actual)

►

Initialization Analysis Concept Design Implementation Validation

 ◆ ◆ ◆ ◆ ◆

Expected Results within the Reporting Period achieved / not achieved

o Plant software infrastructure analysis finished

o Concept evaluation finished

o Concept architecture finished

o Concept functional specifications finished

Reasons for Deviation

o N/A

Further procedure Responsible

o Further design and implementation of CM System components will focus on:

o Detection and Logging of unauthorized artifact changes Team

o Comprehensive Development Process Team

o Computer aided spare part replacement process Team

Project costs Budget Effort reporting

period
Effort total Remaining

budget

External 0€ 0€ 0€ 0€

Internal 79,200€ 14,400€ 43,200€ 36,000€

Total 79,200€ 14,400€ 43,200€ 36,000€

Notes

Budget calculation:
hourly rate per person: 120€
additional 5h per week
Team size: 3 developers
Project duration: 5 weeks
Proposed necessary budged increase: 9,000€

Report author:

Team config management

Receiver:

Prof. Dr. P. Richard

Date of next report:

04.12.2020

Project
MIS 2020 – Major Project
Configuration Management

STATUS REPORT NO. 3 04.12.2020

Project Start: 06.10.2020
Planned End: 22.12.2020
Project Lead: A. Holzmann

Reporting Period:

17.11.2020 – 04.12.2020
Reason:
Milestone – Release Candidate 1

Current Status (target vs. actual)

►

Initialization Analysis Concept Design Implementation Validation

Expected Results within the Reporting Period achieved / not achieved

o Design Phase RC1 (Comprehensive Development Process) finished

o Implementation Phase RC1 finished

o Validation Phase RC1 finished

o Training course material creation started

Reasons for Deviation

o N/A

Further procedure Responsible

o Design, Implementation & Validation RC2 (Detection and Logging of unauthorized artifact changes) Team

o Design, Implementation & Validation RC2 (Computer aided spare part replacement process) Team

o Training course material creation Team

o

Project costs Budget Effort reporting

period
Effort total Remaining

budget

External 0€ 0€ 0€ 0€

Internal 79,200€ 18,000€ 61,200€ 18,000€

Total 79,200€ 18,000€ 61,200€ 18,000€

Notes

Report author:

Team config management

Receiver:

Prof. Dr. P. Richard

Date of next report:

22.12.2020

Project
MIS 2020 – Major Project
Configuration Management

STATUS REPORT NO. 4 14.12.2020

Project Start: 06.10.2020
Planned End: 22.12.2020
Project Lead: A. Holzmann

Reporting Period:

04.12.2020 – 14.12.2020
Reason:
Milestone – Release Candidate 2

Current Status (target vs. actual)

►

Initialization Analysis Concept Design Implementation Validation

 ◆ ◆ ◆ ◆ ◆

Expected Results within the Reporting Period achieved / not achieved

o Design Phase RC2 finished

o Implementation Phase RC2 finished

o

o

Reasons for Deviation

o N/A

Further procedure Responsible

o Validation RC2 (Detection and Logging of unauthorized artifact changes) Team

o Validation RC2 (Computer aided spare part replacement process) Team

o Training course material creation Team

o

Project costs Budget Effort reporting

period
Effort total Remaining

budget

External 0€ 0€ 0€ 0€

Internal 79,200€ 10,800€ 61,200€ 7,200€

Total 79,200€ 10,800€ 61,200€ 7,200€

Notes

Report author:

Team config management

Receiver:

Prof. Dr. P. Richard

Date of next report:

22.12.2020

	Initialization Phase
	Project Setup
	Project Definition
	Project Infrastructure
	Scenario Definition

	Analysis Phase
	Risk Assessment
	Step 1 - Risk Identification
	Step 2 - Risk Analysis
	Step 3 - Risk Evaluation
	Result - Assets
	Result - Mitigations

	Requirements Specification
	Business Requirements
	Safety Requirements
	Security Requirements

	Infrastructure Analysis
	Hardware Structure
	Software Structure

	Concept Phase
	Concept Development
	Concept MIT1 & MIT2
	Concept MIT3
	Concept MIT4 & MIT6
	Concept MIT5
	Concept MIT7

	Design Phase
	Comprehensive Development Process
	Tool Research
	Architecture Description
	Functional Specification

	Detection and logging of unauthorized artifact changes
	Tool Research
	Architecture Description
	Functional Specification

	Implementation of computer aided spare part replacement process
	Tool Research
	Architecture Description
	Functional Specification

	Implementation Phase
	Release Candidate 1 (RC1)
	Implementation (RC1)
	Integration Test (RC1)

	Release Candidate 2 (RC2)
	MIT 3 - Implementation (RC2)
	MIT 3 - Integration Test (RC2)
	MIT 7 - Implementation (RC2)
	MIT 7 - Integration Test (RC2)

	Validation Phase
	System Test Validation - RC1
	Customer Integration Test - RC1
	Customer Acceptance Test - RC1
	System Test Validation - RC2
	Customer Integration Test - RC2
	Customer Acceptance Test - RC2

	Training
	Training Concept Development
	Training Content

	Outlook
	Abbreviations
	References
	Appendix: Project Scenario
	Appendix: System and Software Requirements Specification
	Appendix: Integration Test
	Appendix: Customer Integration Test
	Appendix: Integration Test RC2
	Appendix: System Integration Test RC2
	Appendix: Project Status Reports

